
 Received: 05-10-2024 | Accepted: 23-11-2024 | Published Online: 14-02-2024

118

Accredited SINTA 2 Ranking
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online at: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

 Vol. 9 No. 1 (2025) 118 - 129 e-ISSN: 2580-0760

Application of VGG16 in Automated Detection of Bone Fractures in X-

Ray Images

Resky Adhyaksa1, Bedy Purnama2*
1School of Computing, Telkom University, Bandung, Indonesia

2Center of Excellence Artificial Intelligence for Learning and Optimization, Telkom University, Bandung, Indonesia
1reskyadhyaksa@student.telkomuniversity.ac.id, 2bedypurnama@telkomuniversity.ac.id

Abstract

The purpose of this research is to determine whether or not a deep learning model called VGG16 can automatically identify

bone fractures in X-ray pictures. The dataset, sourced from Kaggle, includes 10,522 images of human hand and foot bones,

which underwent preprocessing steps such as normalization and resizing to 224x224 pixels to enhance data quality. The study

utilizes the VGG16 architecture, pre-trained on ImageNet, as a base model, with transfer learning applied to adapt the model

for fracture detection by fine-tuning its weights. This architecture consists of five blocks of convolutional and max-pooling

layers to effectively extract and enhance information from the images for precise classification. The training and testing phases

utilized an 80:20 split of the data, employing binary cross-entropy as the loss function and the Adam optimizer for efficient

weight updates. The model achieved high performance, with an accuracy of 99.25%, precision of 98.62%, recall of 98.88%,

and an F1-score of 99.16% over 25 epochs with a batch size of 128. Experimental results indicate that smaller batch sizes

generally enhance accuracy and reduce loss values, with batch sizes of 128 and 16 yielding optimal performance. The study's

findings underscore the potential of VGG16 in improving diagnostic accuracy and reliability in medical imaging, providing a

robust tool for fracture detection. Future research should continue exploring hyperparameter optimization to further enhance

model performance while balancing computational efficiency.

Keywords: Deep Learning; Bone Fracture; X-Ray Images; Convolutional Neural Network; VGG16

How to Cite: R. Adhyaksa and B. Purnama, “Application of VGG16 in Automated Detection of Bone Fractures in X-Ray

Images”, J. RESTI (Rekayasa Sist. Teknol. Inf.), vol. 9, no. 1, pp. 118 - 129, Feb. 2025.

DOI: https://doi.org/10.29207/resti.v9i1.6101

1. Introduction

A fracture is a medical condition that occurs when the

continuity of bone is disrupted, usually due to

significant trauma or injury [1]. Fractures can vary from

a minor crack to a completely separate bone. This

condition not only causes severe pain but can also result

in functional impairment of the affected body part.

Broken bones often require appropriate medical

treatment, including immobilization using a cast or

splint and, in some cases, surgery to ensure optimal

healing.

Bone fractures are a common health problem with a

significant impact on the quality of life of sufferers. In

addition to intense pain, fractures often lead to

decreased mobility and body function, hampering daily

activities [2]. The main causes of fractures include

direct trauma such as accidents, falls, or hard impacts,

as well as certain medical conditions such as

osteoporosis that can increase the risk of fracture.

Understanding the types of fractures, their symptoms,

and effective treatment methods is crucial in recovery.

With prompt and appropriate treatment, the prognosis

of fracture patients can be improved, minimizing the

risk of long-term complications and ensuring a return to

normal function of the injured bone.

Fractures are usually detected and analyzed through X-

rays, which allows doctors to identify and diagnose

fractures. Various studies have been developed for early

fracture detection methods using X-rays to improve the

accuracy and speed of diagnosis. One such study

utilized the Deep Neural Network (DNN) method for

fracture classification and achieved 92.44% accuracy in

predicting fracture samples on X-ray images [3].

Other research also focuses on the application of deep

learning methods, utilizing the MURA dataset from

Stanford and the Deep Convolutional Neural Network

https://doi.org/10.29207/resti.v9i1.6101

 Resky Adhyaksa, Bedy Purnama

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 1 (2025)

This is an open access article under the CC BY-4.0 license 119

(DCNN) technique with the AlexNet model [4]. This

research obtained an accuracy of 86.67%, which is

lower than previous research. However, it provides a

new picture in conducting fracture research.

In addition, there is also research that focuses on the

classification of X-ray images to detect pneumonia [5].

This research has similarities with the research

conducted, which both use the VGG16 model. In the

study on pneumonia, the VGG16 model achieved an

accuracy value of 95% in image classification. This

success shows the significant potential of the VGG16

model in analyzing and classifying medical images.

VGG16 is a Convolutional Neural Network (CNN)

model that plays a key role in deep learning by

extracting high-level features from images through its

16-layer architecture. This network has been

specifically designed to capture intricate details by

applying convolutional filters across various layers,

making it highly effective for image classification tasks.

In a breast cancer classification study using the VGG16

model as the classification algorithm, an accuracy of

89.6% was obtained [6]. The use of VGG16 in breast

cancer classification shows its potential in supporting

early diagnosis and improving detection accuracy,

which is crucial for timely treatment and care for

patients. The model’s ability to learn hierarchical

features from raw image data demonstrates its core

function in CNN-based deep learning.

Another research study [7] proposed a technique for

diagnosing bone fractures by leveraging texture

features based on income inequality and support vector

machines (SVM). The study was focused on accurately

and efficiently identifying and categorizing both broken

and intact bones. The proposed model significantly

improved the detection performance by using the Gray

Level Co-occurrence Matrix (GLCM) texture features

in conjunction with the Gini Index. The results

indicated that the SVM model achieved an accuracy of

95% in classifying fractured bones, demonstrating a

notable improvement over previous methods.

Recent research into fracture classification using

artificial intelligence has shown significant progress in

classification accuracy [8]. This research utilized the

BoneView algorithm from the GLEAMER company to

detect fractures [9]. The algorithm achieved an

accuracy of 97%, the highest value compared to

previous studies. This result confirms the superiority of

BoneView in improving fracture detection accuracy,

making an important contribution to the field of

diagnostic radiology.

Various deep learning models have been employed in

medical imaging, such as Deep Neural Networks

(DNNs) and Convolutional Neural Networks (CNNs),

for tasks like fracture classification and disease

detection. Among these, models like AlexNet, ResNet,

and EfficientNet have demonstrated high accuracy in

image classification. Despite the advancements in these

models, VGG16 was chosen for this study due to its

simplicity, effectiveness in feature extraction, and

consistent performance in medical image classification

tasks. While models like ResNet and EfficientNet are

known for their superior performance in many

classification tasks due to their deeper architectures and

optimization techniques, VGG16 offers a more

straightforward and interpretable structure, making it

easier to fine-tune for specific applications such as

fracture detection.

This study aims to contribute to two main aspects based

on previous research. First, this study uses a dataset that

has gone through a preprocessing stage with a

normalization approach, aiming to reduce noise and

improve data quality. Secondly, this study applies the

VGG16 classification method, which is more accurate

than previous studies. With this approach, this study

achieved high accuracy and offered a method that can

be adopted to improve fracture detection in the future.

The results from this study show significant potential in

improving the quality of radiology diagnosis and

provide a solid foundation for developing more

effective fracture detection methods.

2. Research Methods

In the research conducted, there is a flowchart that

explains each step of problem-solving based on Figure

1. The first stage is data fetching, collected from

Kaggle, an open-source website. A total of 10,522 data

were found in this process. The collected data

underwent a preprocessing stage to remove and reduce

the noise.

The next stage involves creating the VGG16 layer

model, which will serve as the main algorithm for

solving this problem. After creating the model and

processing the data, we divide the data into two parts

with a ratio of 80:20 for training and testing purposes.

The training stage utilizes the training data, while the

prediction stage uses the testing data. Finally, we

evaluate the model to assess the performance of the

trained and tested models. The research flowchart

system will be summarized in Figure 1.

Figure 1. Research Flowchart

2.1 Dataset

The data is sourced from the open-access platform

Kaggle [10], which provides a free collection of X-ray

data of broken human hand and foot bones. The dataset

consists of 10,522 images, split into three main parts for

training, testing, and validation. The split follows a

common practice in deep learning to reserve a portion

of the dataset for testing and validation in order to

measure the model's performance on unseen data.

 Resky Adhyaksa, Bedy Purnama

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 1 (2025)

This is an open access article under the CC BY-4.0 license 120

The reason for using an 80:20 data split in this study is

to balance the need for sufficient training data while

preserving enough data to accurately test the model’s

generalization. With a larger training set (80%), the

model has more data to learn from, which helps improve

its performance. The 20% testing set is reserved for

evaluating the model's ability to generalize to new,

unseen data, ensuring that the results are not overly

biased toward the training data.

This split is commonly used in deep learning tasks

because it offers a good trade-off between training

accuracy and generalization. However, there is always

a risk of overfitting, particularly when working with

complex models like VGG16. Overfitting occurs when

a model performs well on the training data but poorly

on the test data, indicating that it has learned noise or

irrelevant patterns rather than generalizable features. To

mitigate this, the model was validated using an

additional validation set consisting of 798 images (337

fractured and 461 normal), which helps monitor

performance during training and ensures the model does

not overfit.

Additionally, data augmentation techniques such as

rotation, zooming, and horizontal flipping were applied

to artificially increase the diversity of the training set.

These techniques are essential for preventing

overfitting by exposing the model to a wider variety of

input conditions, thereby enhancing its ability to

generalize across different types of X-ray images. The

dataset used is presented in Figure 2.

Figure 2. (a) Fractured Human Wrist, (b) Normal Human Wrist.

Figure 2 presents two X-ray images of a human hand,

providing a detailed comparison between a fractured

hand and a normal hand. Part (a) of the figure illustrates

an X-ray of a hand with fractured bones. The image

reveals a significant disruption in the continuity of the

bones, indicative of a fracture. This type of injury

typically results from various forms of trauma, such as

accidents, falls, or severe impacts [1]. The X-ray clearly

shows the fractured areas, where the bone has lost its

structural integrity. These fractures may appear as clean

breaks, cracks, or even multiple shattered fragments,

depending on the severity of the injury. The visibility of

these disruptions is crucial for medical professionals to

diagnose the exact nature and extent of the fracture,

which in turn informs the appropriate treatment plan,

such as casting, splinting, or surgical intervention.

Part (b), in contrast, depicts an X-ray of a hand with

normal bones. The bones in this image are intact, with

no signs of fractures or damage. The smooth,

continuous outlines of the bones indicate a healthy

skeletal structure. This intact bone structure is essential

for normal hand function, providing the necessary

support for movement, dexterity, and strength. The

comparison with the fractured hand in part (a)

underscores the impact that bone integrity has on

overall hand function and health. The normal X-ray

serves as a baseline, highlighting what a healthy hand

should look like, free from any abnormalities or

injuries.

By juxtaposing these two images, Figure 2 effectively

demonstrates the stark differences between a fractured

and a normal hand. The fractured hand shows clear

signs of trauma with interrupted bone continuity, while

the normal hand exhibits a flawless bone structure. This

visual comparison is instrumental in understanding the

implications of bone fractures, emphasizing the

importance of timely and accurate diagnosis and the

need for proper medical treatment to restore bone

integrity and functionality.

2.2 Preprocessing

The preprocessing phase plays a crucial role in image

and text data classification. During this phase, we trim

or transform parts of the data to remove noise that could

interfere with the model training process [11].

Preprocessing employs techniques such as

normalization, duplication removal, filling missing

values, and data transformation. Handling large and

complex data sets requires substantial memory and

processing time. By performing preprocessing, we can

reduce the data size, thereby speeding up the training

time and lessening the load on the computing system

[12].

This research applied several preprocessing steps to the

dataset to ensure the data was ready for use in the

VGG16 model. The preprocessing steps included

shifting samples by 20%, enlarging images by 20%, and

horizontally flipping images for a portion of the training

data. Additionally, data normalization was performed to

ensure that the pixel values of the photos were within a

uniform range, specifically between -1 and 1 [13].

Normalization using the range of -1 to 1 has several

important advantages, especially in the context of

training the VGG16 model. Many activation functions

used in neural networks, such as tanh and ReLU, can

work more effectively with data within the range of -1

to 1 [14]. Tanh is a hyperbolic tangent activation

function that outputs values between -1 and 1. It is

particularly useful because it centers the data around

zero, which helps mitigate issues with saturation that

can occur in deeper networks, thereby improving

 Resky Adhyaksa, Bedy Purnama

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 1 (2025)

This is an open access article under the CC BY-4.0 license 121

convergence during training. ReLU, on the other hand,

outputs the input directly if it is positive; otherwise, it

outputs zero. This non-linear activation function allows

models to handle positive values effectively, promoting

sparse activation and speeding up training. ReLU has

become popular due to its simplicity and efficiency in

dealing with the vanishing gradient problem, making it

suitable for deep networks. Furthermore, data

normalized within a smaller and symmetrical range can

accelerate the training process by making gradient

descent more stable and efficient, providing reassurance

about the stability and efficiency of our training

process.

A formula can be used to find the range value in

normalization. The formula is called Feature Scaling,

which is used to change the data value to be in the range

of 0 to 1. The feature scaling formula is modified to

achieve the -1 to 1 in normalization. It becomes like the

following Formula 1 [15]. In this research, the process

focused on the entire area of the images rather than

specific regions of interest (ROI). This approach was

taken to ensure that the model could capture all possible

features present in the X-ray images, regardless of their

location within the frame.

𝑥′ = 2 × (
𝑥𝑖−min (𝑥)

max(𝑥)−min (𝑥)
) − 1 (1)

Based on Formula 1 [15], the normalization value is

calculated by converting the existing data values into a

range of 0 to 1. This process is done by subtracting the

𝑥𝑖 value with min(𝑥) and then dividing it by the

difference between max(𝑥) and min(𝑥). After that, the

result will be multiplied by two and reduced by one to

get a value from -1 to 1. In this instance, 𝑥𝑖 represents

the initial data value, while min(𝑥) and max(𝑥) denote

the smallest and largest values within the dataset,

respectively.

This preprocessing stage includes only a few steps as

the dataset used has gone through several preprocessing

stages before. The dataset has undergone image

rotations with rotations ranging from 15% to 90%,

which increased the amount of data to about 10,522

images. Therefore, in this study, the preprocessing stage

focused more on normalizing and adjusting the images

to fit the model to be used.

In addition to normalization, the data samples were also

converted to a length and width of 224 pixels to match

the input required by the VGG16 model. This process

ensures that all images in the dataset have a consistent

size, which facilitates the model training process. With

this combination of steps, data preprocessing aims to

improve data quality and support optimal model

performance [16].

2.3 VGG16 Layer Modeling

Advanced deep-learning models in medical imaging

have revolutionized diagnostic accuracy and efficiency.

The VGG16 convolutional neural network, in

particular, has shown great promise in various

classification tasks. This study specifically focuses on

using the VGG16 model to classify fractured bones. By

leveraging the model's ability to capture detailed

features in medical images, we strive to enhance the

diagnostic process for detecting fractures. This

approach has the potential to improve accuracy and

offer a reliable tool for medical practitioners, resulting

in superior patient outcomes and more streamlined

clinical workflows [17].

The deep learning model employed in this study focuses

on the VGG16 architecture, which comprises several

blocks [18]. The model includes five blocks designed to

process the input shape defined by the image matrix

vector size. These layers progressively extract and

refine features from the input images, facilitating

accurate classification of fractured bones. Table 1

summarizes the detailed composition of these blocks.

This structured approach enhances the model's ability to

learn intricate patterns and ensures robust performance

across different datasets, establishing it as a dependable

resource for medical diagnostics.

Table 1. VGG16 Architecture Model

Block Layer Type
Number of

Filters

Filter

Size

Activation

Function

Block

1

Convolutional

Layer
64 3x3 ReLU

Convolutional

Layer
64 3x3 ReLU

Max-Pooling

Layer
- 2x2 -

Block

2

Convolutional

Layer
128 3x3 ReLU

Convolutional

Layer
128 3x3 ReLU

Max-Pooling

Layer
- 2x2 -

Block

3

Convolutional

Layer
256 3x3 ReLU

Convolutional

Layer
256 3x3 ReLU

Convolutional

Layer
256 3x3 ReLU

Max-Pooling

Layer
- 2x2 -

Block

4

Convolutional

Layer
512 3x3 ReLU

Convolutional

Layer
512 3x3 ReLU

Convolutional

Layer
512 3x3 ReLU

Max-Pooling

Layer
- 2x2 -

Block

5

Convolutional

Layer
512 3x3 ReLU

Convolutional

Layer
512 3x3 ReLU

Convolutional

Layer
512 3x3 ReLU

Max-Pooling

Layer
- 2x2 -

Based on Table 1, The first block begins the feature

extraction by applying two convolutional layers, each

with 64 filters and a small receptive field, aimed at

identifying fundamental image characteristics like

edges and textures. Following these layers, a max-

pooling layer diminishes the spatial dimensions of the

 Resky Adhyaksa, Bedy Purnama

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 1 (2025)

This is an open access article under the CC BY-4.0 license 122

feature maps, thus lowering the computational burden

and introducing translational invariance [19].

In the second block, feature extraction's complexity

increases with convolutional layers containing 128

filters. Like the first block, two convolutional layers are

applied sequentially, and then a max-pooling layer is

utilized. This architecture enables the model to identify

more detailed patterns and characteristics from the input

images [20].

The third block extends the feature extraction capability

by employing three convolutional layers, each with 256

filters. The additional convolutional layer in this block

enhances the model's ability to learn more complex and

abstract representations of the input data [21]. The max-

pooling layer at the end of this block continues to reduce

the spatial dimensions while preserving the learned

features.

The fourth block follows a similar pattern but with

increased filters in the convolutional layers, set to 512.

This increment allows the model to capture finer details

and more complex patterns within the images. The

arrangement of three convolutional layers, succeeded

by a max-pooling layer, guarantees that the extracted

features are comprehensive and hierarchically

organized.

Finally, the fifth block mirrors the structure of the fourth

block, utilizing three convolutional layers with 512

filters each. This block further refines the feature maps,

capturing the most intricate details necessary for

accurate classification. The concluding max-pooling

layer reduces the feature map dimensions, preparing the

refined features for subsequent stages of the model,

such as fully connected layers and classification tasks

[22].

In each convolutional layer, there is a general formula

used to calculate the parameters of the layer. First, the

convolutional layer needs to determine the value of the

width. The width in a convolutional layer is a concept

that describes the layer's capacity to process and

represent information from the input data. Determining

the width value first is crucial because it influences

many aspects of the network's operation and

performance. The search for the width value can be

detailed using Formula 2 [23].

𝑤𝑖𝑑𝑡ℎ =
𝑐𝑖𝑘𝑖

2

𝑔𝑖
 (2)

In Formula 2[23], the value of the number of input

channels is denoted by 𝑐𝑖, which indicates the depth of

the input feature map. 𝑐𝑖 signifies the amount of

information that can be processed by the layer. Next, 𝑘𝑖

represents the kernel size of the convolutional

operation, such as 3x3, 5x5, and others. The kernel size

determines the spatial area of the input that will be

processed by each neuron in the output layer. Larger

kernels can capture more spatial details from the input.

Finally, 𝑔𝑖 represents the number of groups in each

convolutional operation. Group convolutions divide the

input channels into several smaller groups, where each

group is processed independently. After calculating the

width using Formula 2 [23], this value is then inserted

into Formula 3 [23], which explains how a neural

network will be processed within the convolutional

layer.

𝐻𝐿 = log(𝑟𝐿+1
2 𝑐𝐿+1) − ∑ log(

𝑐𝑖𝑘𝑖
2

𝑔𝑖
)𝐿

𝑖=1 (3)

Formula 3 [23] consists of two main parts used to

measure the entropy or expressive capacity of a

convolutional network. The first part, log(𝑟𝐿+1
2 𝐶𝐿+1),

describes the total amount of information that can be

represented by the feature map in the final output layer,

where 𝑟𝐿+1 is the spatial resolution and 𝑐𝐿+1 is the

number of output channels. The second part,

∑ log(
𝑐𝑖𝑘𝑖

2

𝑔𝑖
)𝐿

𝑖=1 , is the summation of the logarithms of

each convolutional layer, where 𝑐𝑖 is the number of

input channels, 𝑘𝑖 is the kernel size, and 𝑔𝑖 is the

number of groups.

The ReLU activation function is employed in this layer

to incorporate non-linearity into the model [24].

Without non-linear activation functions, the neural

network would only be capable of performing linear

operations, which means the network's ability to learn

and model complex data would be highly limited. ReLU

helps the network learn more complex representations

[25].

However, alternative activation functions also

contribute uniquely to the performance of neural

networks. For example, Tanh, the hyperbolic tangent

function scales inputs to a range of -1 to 1, which helps

center the data and can lead to faster convergence

compared to ReLU in some cases [26]. However, it may

still suffer from the vanishing gradient problem for

extreme input values. Another function is are sigmoid,

the sigmoid function outputs values between 0 and 1,

making it suitable for binary classification tasks [26].

However, like Tanh, it can lead to vanishing gradients,

particularly in deeper networks, making it less

favorable for hidden layers in modern architectures.

The ReLU function is adjusted by introducing

additional parameters, allowing further tuning of the

standard activation function [27]. The ReLU activation

function formula is given in Formula 4 [28]. Based on

this formula, gamma and beta can simplify the function

to a more conventional form.

𝜎(𝑥) = (𝛼 ∙ max{0, 𝜓} + 𝛾, 𝛽 ∙ max{0, 𝜑(−𝑥)} + 𝛿) (4)

Based on Formula 4 [28], the value of 𝛼 is a parameter

that scales the positive part of the input after applying

the function 𝜓. The value of 𝛽 scales the negative part

of the input after applying the function 𝜑. The

parameter 𝛾 acts as a bias added to the positive part of

the input. Similarly, 𝛿 functions like 𝛾; it is a bias added

to the negative part of the input after being inverted by

𝜑.

 Resky Adhyaksa, Bedy Purnama

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 1 (2025)

This is an open access article under the CC BY-4.0 license 123

The function is split into two primary sections, each

designed to improve the neural network's flexibility and

ability to learn data representations effectively. The first

part will handle the computation of positive values, as

detailed in Formula 5 [28]. The second part will handle

the computation of negative values, as detailed in

Formula 5 [28].

(𝛼 ∙ max{0, 𝜓} + 𝛾) (5)

The first part in Formula 5 [28] is responsible for

processing the positive input, controlling the scale with

𝛼, and adding bias with 𝛾. It handles the positive portion

of the input 𝑥. The function max{0, 𝜓} ensures that only

the positive values of the input are passed through,

while the negative values are set to zero. The parameter

𝛼 determines the magnitude of the output from the

positive portion. By multiplying the result of max{0, 𝜓}

by 𝛼, we can control the sensitivity or influence of the

positive input on the final output.

Then, the parameter γ is added as an additional bias that

can shift the positive output upward or downward. This

can help further adjust the output value and provide

additional flexibility for model tuning. After

understanding what the ReLU function does in the first

part, the second part will be detailed in Formula 6 [28].

(𝛽 ∙ max{0, 𝜑(−𝑥)} + 𝛿) (6)

The second part of the ReLU function in Formula 6 [28]

is responsible for processing the negative portion of the

input 𝑥. The function max{0, 𝜑(−𝑥)} ensures that only

the negative values of the input, inverted to positive, are

passed through, while the positive values are set to zero.

The parameter 𝛽 determines the magnitude of the

output from the negative portion. By multiplying the

result of max{0, 𝜑(−𝑥)} by 𝛽, we can control the

sensitivity or influence of the negative input on the final

output.

Next, adding bias using the parameter 𝛿 will serve as an

additional bias that can shift the negative output upward

or downward. This provides further flexibility in

adjusting the output value. By setting 𝜑 and 𝛿 to zero,

the function becomes more straightforward and more

similar to the conventional ReLU function while still

maintaining additional flexibility for scaling

adjustments through 𝜑 and 𝛽.

There is a simplification in the use of these two

functions by setting 𝛾 and 𝛿 to zero. This simplification

transforms the complex ReLU activation function into

a more conventional form. Formula 7 [28] will display

the decomposition of this simplified function.

𝜎(𝑥) = (𝛼 ∙ max{0, 𝑥} , 𝛽 ∙ max{0, (−𝑥)}) (7)

Based on Formula 7 [28] compared to the previous

Formula 4 [28], it is found that the values 𝜓(𝑥) and

𝜓(−𝑥) are chosen as identity mappings to 𝑥. After this

mapping, each part operates as follows: 𝛼 ∙ max{0, 𝑥}

multiplies the positive input 𝑥 by α. If 𝑥 is greater than

0, the output is 𝛼𝑥. If 𝑥 is less than or equal to 0, the

output is 0. Then, the second part acts as an inverted

ReLU function that multiplies the negative input 𝑥 by

𝛽. If 𝑥 is less than 0, the output is 𝛽(−𝑥). If 𝑥 is greater

than or equal to 0, the output is 0.

Then, In Formula 4 [28], the values of 𝛾 and 𝛿 are set

to zero, resulting in no additional bias shift. This makes

the function more straightforward and more similar to

the conventional ReLU. However, there is additional

flexibility through 𝛼 and 𝛽, which allows for the

adjustment of sensitivity to positive and negative inputs

separately.

Every block in the model contains a Max-Pooling layer

that reduces the feature map dimensions by half,

affecting both its width and height [29]. Additionally,

max pooling helps the network become more robust to

shifts in the position of features within the image. The

operation of the max pooling layer in altering

dimensions is governed by Formula 8 [19], which

determines the output value for each position in the

resultant feature map.

𝑦𝑘𝑖𝑗 = max(𝑝,𝑞)∈𝑅𝑖𝑗
𝑥𝑘𝑝𝑞 (8)

Formula 8 [19] presented indicates that the output value

𝑦𝑘𝑖𝑗 at position (𝑖, 𝑗) of the k-th feature map is obtained

by taking the maximum value of the elements 𝑥𝑘𝑝𝑞

within the pooling region 𝑅𝑖𝑗. More specifically, the

expression max(𝑝,𝑞)∈𝑅𝑖𝑗
𝑥𝑘𝑝𝑞 shows that for each

position (𝑖, 𝑗), there is a pooling region 𝑅𝑖𝑗

encompassing several elements in the original feature

map. Among the elements in this pooling region, the

highest value is selected as the output value 𝑦𝑘𝑖𝑗. This

process aims to reduce the dimensionality of the feature

map while retaining the most significant features. Max

pooling helps convolutional neural networks become

more robust to shifts in the position of features within

the image, and it also reduces the number of parameters

and computational requirements in the network.

The model's compilation process utilizes the Adam

optimizer for its efficiency and adaptability in training

deep-learning models [30]. Adam, or Adaptive Moment

Estimation, is a popular algorithm known for handling

gradient changes swiftly and efficiently [31]. It

combines the benefits of AdaGrad and RMSProp by

updating weights using two types of momentum: the

first measures the exponential average of the gradients,

and the second measures the exponential average of the

squared gradients. To ensure accuracy, Adam applies

bias correction to both momenta. This process allows

for more stable and faster convergence. Before updating

weights with Adam, we calculate the first and second

moving momenta using Formulas 9 and 10 [32].

𝑚𝑡 = (1 − 𝛽1) ∑ 𝛽1
𝑡−𝑖𝑔𝑖

𝑡
𝑖=0 (9)

𝑣𝑡 = (1 − 𝛽2) ∑ 𝛽2
𝑡−𝑖𝑔𝑖

2𝑡
𝑖=0 (10)

Formula 9 [32] calculates the first moving momentum,

𝑚𝑡, where 𝛽1 is the exponential decay rate for the first

moment, and 𝑔𝑖 represents the gradient at each time step

 Resky Adhyaksa, Bedy Purnama

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 1 (2025)

This is an open access article under the CC BY-4.0 license 124

𝑖. This smooths the gradient estimates, helping to

stabilize the training process. The second moving

momentum at Formula 10 [32] spilled, 𝑣𝑡, captures the

exponential average of the squared gradients. Here, 𝛽2

is the exponential decay rate for the second moment.

This second moment helps to scale the gradients,

allowing the optimizer to adjust the learning rate

adaptively for each parameter, ensuring more efficient

convergence. After knowing the values of 𝑚𝑡 and 𝑣𝑡,

the bias correction of the momentums can now be

calculated at Formula 11 [32] and Formula 12 [32].

�̂�𝑡 =
𝑚𝑡

1− 𝛽1
𝑡 (11)

�̂�𝑡 =
𝑣𝑡

1− 𝛽2
𝑡 (12)

Using the values of 𝑚𝑡 and 𝑣𝑡 from the previous

momentum calculations, the bias correction for the first

momentum, given by Formula 11 [32], and for the

second momentum by the Formula 12 [32]. Here, 𝛽1

and 𝛽2 are the exponential decay rates used in the initial

momentum calculations. This bias correction facilitates

the creation of more accurate estimates of the

exponential averages of gradients and squared

gradients, promoting a more stable and efficient weight

update process. After all the values were calculated

now, the updated weight can be calculated at Formula

13 [32].

𝑤𝑡 = 𝑤𝑡−1𝑛
�̂�𝑡

√�̂�𝑡+𝜀
 (13)

In Formula 13 [32], the value of 𝑤𝑡−1 is the previous

weight, n is the learning rate, �̂�𝑡 is the bias-corrected

first momentum, �̂�𝑡 is the bias-corrected second

momentum, and 𝜀 is a small constant added to prevent

division by zero. This formula ensures that the weight

updates are scaled appropriately by the first and second-

moment estimates, enabling the optimizer to handle

gradient changes more efficiently and ensuring a stable

convergence process.

The loss function employed is binary cross-entropy,

which is particularly suitable for binary classification

tasks such as this one [33]. Additionally, the model's

performance is evaluated based on accuracy metrics,

providing a clear measure of its classification

effectiveness [34]. This combination of optimization,

loss function, and performance metrics ensures that the

model is both well-tuned and capable of delivering

reliable diagnostic results.

2.3 Evaluation

To assess the performance of the VGG16 model in

classifying bone fractures, a confusion matrix has been

utilized to evaluate the model after training. The

confusion matrix provides a comprehensive breakdown

of the model’s predictions versus the actual

classifications [35]. It is a tabular representation that

allows us to visualize the performance of a

classification algorithm by detailing the counts of true

positives (TP), false positives (FP), true negatives (TN),

and false negatives (FN). The confusion matrix will be

elaborated upon in Table 2.

Table 2. Confusion Matrix

Actual

 Prediction

 Positive Negative

Positive TP FN

Negative FP TN

From Table 2, we can calculate several important metrics

to evaluate the model’s performance: accuracy,

precision, recall, and F1 score. First, we will explain

accuracy, which measures how accurately the model

predicts the correct data points. It reflects the overall

effectiveness of the model in classifying instances. In

contrast, precision assesses the proportion of true positive

predictions among all positive predictions made by the

model, indicating the reliability of the positive class

predictions. Accuracy will be detailed in Formula 14

[35].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
 (14)

Precision is a critical metric in the evaluation of

classification models, particularly in fields where

accurate predictions are vital, such as medical

diagnostics. Precision quantifies the accuracy of the

model's positive predictions by determining the

proportion of predicted positive instances that are

indeed positive. Formally, it addresses the question: "Of

all instances classified as positive, how many are truly

positive?" A high precision value indicates that the

model is proficient at minimizing false positives,

thereby enhancing its reliability. Precision is calculated

using the formula shown in Formula 15 [35].

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (15)

Recall is another essential metric for evaluating the

performance of a classification model. Often referred to

as sensitivity or the true positive rate, recall quantifies

the model's ability to correctly identify all relevant

positive instances within a dataset. Specifically, it

addresses the question: "Of all actual positive instances,

how many did the model correctly identify?". Recall is

mathematically represented by Formula 16 [35].

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (16)

F1 Score is a vital metric that combines both precision

and recall to provide a single performance measure for

classification models. The F1 Score is particularly

useful in scenarios where there is an imbalance between

the positive and negative classes, as it seeks to find the

balance between the two metrics. This measure is

defined mathematically as the harmonic mean of

precision and recall, calculated using Formula 17 [35].

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙
 (17)

In conclusion, the evaluation of the VGG16 model for

classifying bone fractures through the use of a

confusion matrix has provided valuable insights into its

 Resky Adhyaksa, Bedy Purnama

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 1 (2025)

This is an open access article under the CC BY-4.0 license 125

performance metrics. By detailing true positives, false

positives, true negatives, and false negatives, the

confusion matrix has enabled a comprehensive analysis

of the model's classification abilities. The calculated

metrics of accuracy, precision, recall, and F1 score

serve as critical indicators of the model's effectiveness.

Accuracy reflects the overall correctness of predictions,

while precision and recall assess the reliability and

sensitivity of the positive classifications, respectively.

3. Results and Discussions

This section presents the model's classification results

from the previously designed model for analysis and

discussion. The results include the confusion matrix,

training history, and experiments conducted using

various batch sizes. These findings give a thorough

insight into the model's accuracy and proficiency in

identifying fractured bones.

3.1 Results

The effectiveness of the VGG16 model in medical

image classification, particularly for detecting fractures,

hinges on its robust training process and performance

metrics. By meticulously analyzing the model's training

outcomes, we gain valuable insights into its capability

to classify bone fractures accurately. The results of this

training phase are crucial for understanding how well

the model can generalize to new, unseen data, thereby

providing a reliable tool for medical diagnostics.

At this stage, we analyze the implementation of the

VGG16 layer model for fracture classification. The

research involves training the model for ten epochs with

a batch size of 128, resulting in a notable classification

accuracy of 99.25% and a precision of 98.62%. We

obtained this accuracy using a test dataset of 4,083

samples of 3,366 regular and 267 fracture data points.

We will also evaluate the training results using a

confusion matrix, as illustrated in Table 3.

Table 3. Training Result Matrix

Actual

 Prediction

 Fracture Normal

Fracture 237 1

Normal 1 267

Table 3 illustrates the classification results of the model

on the test data, which consists of two classes: Fractured

and Normal. The confusion matrix reveals that the

model correctly identified 237 samples as Fractured,

meaning the model accurately classified 234 indeed

fractured samples. Additionally, the model correctly

identified 267 samples as Normal, indicating the model

accurately classified 267 samples without fractures.

However, the model misclassified one sample that was

actually Normal as Fractured. Conversely, the model

misclassified one sample that was actually Fractured as

Normal.

The model training process also records the values of

accuracy, validation accuracy, loss, and validation loss

throughout the training. During the training using ten

batches, the model stores these values in a variable

named history. Subsequently, the history will be

summarized in Figure 3 to visualize these values. This

monitoring aims to observe the model's adjustment to

the data during training and evaluate its effectiveness in

preventing overfitting and underfitting issues.

Figure 3. Training History Epochs 1-25

Based on the Figure 3, the initial epoch of the model

recorded an accuracy of 66.29% with a loss of 1.4037,

highlighting the initial inaccuracies as it began its

learning process. Notably, the validation accuracy was

higher at 88.85%, accompanied by a validation loss of

0.3058, suggesting some capacity for generalization to

unseen data from the outset. As training advanced,

considerable improvements were observed in the

second epoch, where training accuracy surged to

96.11% and the loss decreased to 0.1631. Validation

accuracy also improved to 94.36%, with a validation

loss of 0.1527, indicating effective learning and

enhanced predictive accuracy.

By the third epoch, the model attained an accuracy of

98.32%, with a further reduction in loss to 0.0805. The

validation accuracy reached 95.86%, and the loss fell to

0.1124, reflecting ongoing improvement and accuracy

in predictions. In the fourth epoch, training accuracy

peaked at 99.17%, accompanied by a low loss of

0.0536. The validation accuracy reached 97.37%, with

 Resky Adhyaksa, Bedy Purnama

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 1 (2025)

This is an open access article under the CC BY-4.0 license 126

a corresponding loss of 0.0879, suggesting that the

model was increasingly reliable in its predictions.

During the fifth and sixth epochs, both training and

validation accuracies continued to rise. In the sixth

epoch, training accuracy was reported at 99.49%, with

a loss of 0.0294, while validation accuracy climbed to

98.25%, with a loss of 0.0581. These findings illustrate

the model's growing effectiveness and consistency. By

the eighth epoch, training accuracy hit 99.81%,

accompanied by a minimal loss of 0.0160, while

validation accuracy was at 98.62%, with a loss of

0.0529. Such high accuracy indicates that the model had

learned to generalize effectively.

In the ninth and tenth epochs, the model achieved

remarkable training accuracies of 99.78% and 99.89%,

respectively, with training loss values dropping to

0.0132 and 0.0103. The validation accuracy remained

high at 99.25% in both epochs, and loss values

stabilized around 0.0349, suggesting that the model had

attained high precision and consistent performance.

From the eleventh to the twenty-fifth epochs, the model

consistently maintained high accuracy levels with

minimal fluctuations. Training accuracy hovered

between 98% and 99%, while validation accuracy

remained stable at 99.25%, with a low validation loss of

approximately 0.0349. These final epochs demonstrate

the model's robustness and reliability in predicting

fracture classifications, indicating a strong ability to

generalize to unseen data with minimal errors.

These training results demonstrate that the model has

achieved very high accuracy and minimal error in the

training and validation data. The model can generalize

patterns from the training data to the validation data, as

reflected by the high and consistent validation accuracy

and low loss values. The classification report will be

summarized in Table 4.

Table 4. Bone Fracture Classification Report

Class Precision Recall F1-

Score

Accuracy

Fractured 1.00 0.98 0.99 0.99

Normal 0.99 1.00 0.99 0.99

Table 4 presents the performance metrics for the

classification model in distinguishing between fractured

and normal cases. The metrics used to evaluate the

model include Precision, Recall, F1-Score, and

Accuracy, each for both the Fractured and Normal

classes. For the Fractured class, the model achieved a

perfect Precision of 1.00, indicating that all instances

identified as fractured were indeed fractured. This

exceptional performance can be attributed to the high-

quality dataset of 10,522 X-ray images, which provided

a diverse set of examples for the model to learn from,

thus enhancing its ability to accurately classify

instances. The Recall rate for the Fractured class was

0.98, meaning the model correctly identified 98% of the

actual fractured cases.

The VGG16 architecture's strength in feature extraction

played a crucial role here; its deep convolutional layers

are adept at identifying complex patterns in images,

enabling the model to distinguish between fractured and

normal bones effectively. The F1-Score, which is the

harmonic mean of Precision and Recall, was 0.99 for

this class, reflecting a balanced performance. The

Accuracy for the Fractured class was also 0.99,

suggesting that 99% of the total instances were correctly

classified as either fractured or not fractured.

In the case of the Normal class, the model achieved a

Precision of 0.99, showing that 99% of the instances

identified as normal were truly normal. The Recall rate

was perfect at 1.00, indicating that the model identified

all the normal instances correctly. The F1-Score for the

Normal class was 0.99, indicating a high level of

precision and recall. Similarly, the Accuracy for the

Normal class was 0.99, which means the model

correctly classified 99% of the instances as either

normal or not normal. Overall, the model's performance

metrics show high precision, recall, F1-score, and

accuracy across both classes, demonstrating its

effectiveness and reliability in distinguishing between

fractured and normal cases.

3.2 Experimental

To enhance the performance of the fracture

classification model employing the VGG16

architecture, a number of experiments were done at this

stage, involving various hyperparameter adjustments.

The hyperparameters that were modified include batch

size and the number of epochs. Each experiment was

conducted meticulously to ensure that the results

obtained provide a clear picture of how changes in

hyperparameters affect the model's performance. The

outcomes of the five tests carried out are consolidated

in Table 5, providing a comprehensive overview of the

accuracy and loss values attained for each set of

hyperparameters.

Table 5. Experimental Hyperparameter Batch Size

Epochs Batch Size Accuracy Loss

25

256 0.9872 0.0536

128 0.9925 0.0135

64 0.986 0.0805

32 0.9899 0.0433

16 0.9900 0.0241

In the original experiment, a total of 256 batches were

utilized, and the specimen underwent training for ten

epochs. The results showed an accuracy of 98.32% with

a loss value of 0.0536. The second experiment used the

same number of epochs but with a smaller batch size of

128. The accuracy increased to 99.25% with a lower

loss value of 0.0135, indicating that reducing the batch

size can enhance the model's performance.

In the third attempt, the sample size was reduced to 64,

yielding a success rate of 98.69% and an error value of

0.0805. Although the accuracy remained high, the

higher loss value suggests that this batch size may not

be optimal for training the model. For the fourth trial,

 Resky Adhyaksa, Bedy Purnama

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 1 (2025)

This is an open access article under the CC BY-4.0 license 127

the batch size was decreased to 32, resulting in a success

rate of 98.99% and an error value of 0.0433.

For the fifth experiment, a sample size of 16 was

utilized, yielding a success rate of 99.00% and an

incorrect value of 0.0241. From these experiments,

smaller batch sizes improve model accuracy and reduce

loss values. However, a batch size that is too small can

lead to significantly higher loss values, as seen with the

batch size of 64. Therefore, a batch size of 128 or 16

batch sized for achieving a balance between high

accuracy and low loss values.

Based on the analysis of training data across various

batch sizes, a clear pattern emerges regarding the

impact of batch size on accuracy and loss. The batch

size of 128 yields the highest accuracy (0.9901) and the

lowest loss (0.0232), suggesting that this size may be

the optimal choice in this context. Meanwhile, although

a batch size of 16 also achieves an excellent accuracy

(0.9900) and a low loss (0.0241), larger batch sizes,

such as 256, tend to show less satisfactory accuracy and

higher loss (0.9872 and 0.0536, respectively). These

findings align with previous research indicating that

smaller batch sizes can aid in achieving better

generalization, whereas larger batch sizes may expedite

training but risk diminishing accuracy if not properly

calibrated [36]. This underscores the importance of

hyperparameter tuning in deep learning models to

achieve optimal performance.

In addition to employing VGG16, this study also

compares its performance against other deep learning

architectures such as AlexNet, DenseNet121,

DenseNet169, and DenseNet201. These models were

selected based on their established success in image

classification tasks, with each offering unique strengths.

AlexNet is recognized for pioneering the use of deep

convolutional networks, while the DenseNet

architectures (121, 169, and 201) are appreciated for

their efficient feature reuse through densely connected

layers, which help mitigate the vanishing gradient

problem in deep networks. The testing results for these

alternative architectures are presented in Table 6.

Table 6. Experiments Using Other Model Architectures

Model Name Accuracy Loss

VGG16 0.9925 0.0135

AlexNet 0.8794 0.2930

DenseNet121 0.9139 0.2187

DenseNet169 0.9899 0.0433

DenseNet201 0.9601 0.0241

Table 6 presents a comparison of five deep learning

models: VGG16, AlexNet, DenseNet121,

DenseNet169, and DenseNet201, evaluating their

performance based on accuracy and loss. VGG16

achieves the highest performance, with an accuracy of

99.01% and a minimal loss of 0.0175, highlighting its

strong generalization ability. DenseNet169 closely

follows with a high accuracy of 98.99% and a slightly

higher loss of 0.0433. DenseNet201 also demonstrates

solid results, achieving a 96.01% accuracy and a loss of

0.0241, although it falls slightly behind the top-

performing models.

Conversely, AlexNet records the lowest accuracy of

87.94% and the highest loss at 0.2930, indicating

weaker performance compared to the other models.

DenseNet121 surpasses AlexNet with an accuracy of

91.39% and a loss of 0.2187, but it does not perform as

well as the more complex DenseNet169. Overall,

DenseNet models, especially DenseNet169, strike a

strong balance between accuracy and loss,

outperforming AlexNet while approaching VGG16's

performance levels.

3.3 Discussion

The objective of this work was to improve the accuracy

of a fracture classification model by utilizing the

VGG16 architecture and conducting a series of tests

with different hyperparameters. The experiments

highlighted the significant impact of batch size on the

model's performance, demonstrating that smaller batch

sizes generally improve accuracy and reduce loss

values. Specifically, batch sizes of 128 and 16 proved

the most effective, achieving an optimal balance

between high accuracy and low loss.

The dataset was divided for experimentation using an

80:20 split, with 80% of the data used for training and

20% for testing. The splitting was conducted based on

the researcher's own requirements, incorporating

experimental setups that included data augmentation

techniques. Data augmentation, such as rotation,

zooming, and flipping, was applied to increase the

diversity of training samples and avoid overfitting.

Additionally, specific regions of the X-ray images

(normal versus fracture) were considered to ensure a

balanced representation of classes. This method helped

maintain consistency between normal and fractured

bone categories and allowed for more robust testing of

the model's ability to generalize across unseen data.

Within the framework of the VGG16 model, the

analysis report indicated excellent reliability, recall, and

F1-score for both classes. Specifically, the fractured

class achieved a precision of 100%, a recall of 98%, and

an F1 score of 99%. The average class also exhibited

impressive performance metrics. The model achieved a

precision of 99%, indicating a high accuracy in

identifying the correct class labels. The recall was

perfect at 100%, demonstrating that the model

successfully identified all instances of the class.

Additionally, the F1 score was 99%, reflecting a

balanced and robust performance in both precision and

recall. These results underscore the model's robust

capability to accurately distinguish between fractured

and regular instances, as evidenced by the overall

accuracy of 99%.

However, there are several challenges and trade-offs

associated with the use of VGG16. First, the model is

computationally expensive due to its depth and the large

number of parameters. This often leads to slower

 Resky Adhyaksa, Bedy Purnama

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 1 (2025)

This is an open access article under the CC BY-4.0 license 128

training times, particularly when working with high-

resolution medical images. Additionally, while smaller

batch sizes improved performance, a batch size of 64

led to higher loss values, suggesting that there is a

threshold beyond which further reduction in batch size

may not yield additional benefits. This highlights the

challenge of balancing hyperparameter tuning with

computational efficiency.

Comparing the other research [3] using Deep Neural

Networks (DNN) achieves 95% accuracy at 10% of test

data and 93% at 15% of test data. Other research [4]

using the Deep Convolutional Neural Network (DCNN)

technique with the AlexNet model, achieved 86.67%

accuracy for gaining the testing data. Lastly, research

[7] using the Gray Level Co-occurrence Matrix gained

an accuracy of 95%. These comparisons will be

presented in Table 7.

Table 7. Comparisons Between Latest Research

Model Name Accuracy

DNN [3] 0.8794

DCNN [4] 0.9139

GLCM [7] 0.9899

VGG16 0.9925

However, it is essential to note that while smaller batch

sizes generally improve model performance, petite

batch sizes like 64 led to higher loss values despite

maintaining high accuracy. This indicates a threshold

below which further reduction in batch size may not

yield additional benefits and may degrade the model's

performance.

In conclusion, this study's findings provide valuable

insights into the optimal configuration of

hyperparameters for training deep-learning models in

medical image classification. The VGG16 model, when

fine-tuned with appropriate batch sizes, demonstrates

exceptional accuracy and robustness in fracture

detection. Future research should explore the balance

between batch size and other hyperparameters to

enhance model performance further while mitigating

computational costs and training time.

4. Conclusions

This study successfully demonstrated the application of

the VGG16 architecture for the automatic detection of

bone fractures in X-ray images. The model achieved

high performance, with an accuracy of 99%, precision

of 98.32%, recall of 98%, and an F1-score of 98.16%.

These results confirm the potential of deep learning

models, particularly VGG16, in enhancing diagnostic

accuracy in medical imaging. Additionally,

comparative experiments with other models like

AlexNet and DenseNet architectures provided valuable

insights into how different architectures perform in the

context of medical image classification. However,

despite these promising results, several limitations must

be acknowledged. First, the dataset, while extensive,

may not fully capture the diversity of real-world clinical

scenarios, such as variations in imaging equipment or

patient demographics. This could limit the model's

generalizability when applied to different clinical

settings. Another limitation is the use of transfer

learning, which, while effective, might not be fully

optimized for this specific task. Future research should

explore custom architectures or domain-specific pre-

trained models to further enhance performance.

Moreover, while the VGG16 model demonstrated

strong accuracy, the computational cost and memory

requirements of deep networks remain a challenge. This

study did not address these issues in depth, and future

work could investigate more efficient models or

techniques like model pruning and quantization to

reduce the computational overhead. Finally, the study

primarily focused on fracture detection but did not

explore other important clinical aspects, such as the

severity or type of fracture. Expanding the model to

provide more nuanced diagnostic insights could

significantly increase its clinical utility. In conclusion,

while the VGG16 model offers a robust solution for

fracture detection, future research should address these

limitations by improving model generalizability,

reducing computational complexity, and expanding the

scope of clinical applications.

Acknowledgements

We sincerely thank Telkom University for its financial

support, which made the completion of this research

possible.

References

[1] S. Rao Karanam, Y. Srinivas, and S. Chakravarty, “A

systematic review on approach and analysis of bone

fracture classification,” Mater Today Proc, vol. 80, pp.

2557–2562, Jan. 2023, doi: 10.1016/j.matpr.2021.06.408.

[2] J. Iliaens, J. Onsea, H. Hoekstra, S. Nijs, W. E. Peetermans,

and W. J. Metsemakers, “Fracture-related infection in long

bone fractures: A comprehensive analysis of the economic

impact and influence on quality of life,” Injury, vol. 52, no.

11, pp. 3344–3349, Nov. 2021, doi:

10.1016/j.injury.2021.08.023.

[3] D. P. Yadav and S. Rathor, “Bone Fracture Detection and

Classification using Deep Learning Approach,” in 2020

International Conference on Power Electronics and IoT

Applications in Renewable Energy and its Control, PARC

2020, Institute of Electrical and Electronics Engineers Inc.,

Feb. 2020, pp. 282–285. doi:

10.1109/PARC49193.2020.236611.

[4] A. Noureen, M. A. Zia, A. Adnan, and M. Hashim,

“Analysis and Classification of Bone Fractures Using

Machine Learning Techniques,” in E3S Web of

Conferences, EDP Sciences, Aug. 2023. doi:

10.1051/e3sconf/202340902015.

[5] K. A. Putri, W. Fawwaz, and A. Maki, “Enhancing

Pneumonia Disease Classification using Genetic

Algorithm-Tuned DCGANs and VGG-16 Integration,”

Open Access Journal, vol. 6, no. 1, pp. 11–22, 2024, doi:

10.35882/jeemi.v6i1.349.

[6] D. Albashish, R. Al-Sayyed, A. Abdullah, M. H. Ryalat,

and N. Ahmad Almansour, “Deep CNN Model based on

VGG16 for Breast Cancer Classification,” in 2021

International Conference on Information Technology, ICIT

2021 - Proceedings, Institute of Electrical and Electronics

Engineers Inc., Jul. 2021, pp. 805–810. doi:

10.1109/ICIT52682.2021.9491631.

 Resky Adhyaksa, Bedy Purnama

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 9 No. 1 (2025)

This is an open access article under the CC BY-4.0 license 129

[7] D. P. Yadav and G. Sharma, “Human Bone fracture

prognosis using Income inequality based Texture Feature

and Support Vector Machine,” IOP Conf Ser Mater Sci

Eng, vol. 1116, no. 1, p. 012137, Apr. 2021, doi:

10.1088/1757-899x/1116/1/012137.

[8] M. F. Russe et al., “AI-based X-ray fracture analysis of the

distal radius: accuracy between representative

classification, detection and segmentation deep learning

models for clinical practice,” BMJ Open, vol. 14, no. 1, Jan.

2024, doi: 10.1136/bmjopen-2023-076954.

[9] J. Oppenheimer, S. Lüken, B. Hamm, and S. M. Niehues,

“A Prospective Approach to Integration of AI Fracture

Detection Software in Radiographs into Clinical

Workflow,” Life, vol. 13, no. 1, Jan. 2023, doi:

10.3390/life13010223.

[10] Madushani Rodrigo, Mohan Kumar, Abdelaziz Faramawy,

and Harsha Arya, “Bone Fracture Multi-Region X-ray

Data,” Apr. 2024.

[11] G. J. Chowdary, G. Suganya, M. Premalatha, and S.

Ganapathy, “Impact Of Machine Learning Models In

Pneumonia Diagnosis With Features Extracted From Chest

X-Rays Using VGG16,” 2021.

[12] M. Abdel-Nasser, J. Melendez, A. Moreno, and D. Puig,

“The impact of pixel resolution, integration scale,

preprocessing, and feature normalization on texture

analysis for mass classification in mammograms,” Int J

Opt, vol. 2016, 2016, doi: 10.1155/2016/1370259.

[13] G. Murtaza et al., “Deep learning-based breast cancer

classification through medical imaging modalities: state of

the art and research challenges,” Artif Intell Rev, vol. 53,

no. 3, pp. 1655–1720, Mar. 2020, doi: 10.1007/s10462-019-

09716-5.

[14] J.-M. Jo, “빅데이터의 정규화 전처리과정이

기계학습의 성능에 미치는 영향 조준모 * Effectiveness

of Normalization Pre-Processing of Big Data to the

Machine Learning Performance”, doi:

10.13067/JKIECS.2019.14.3.547.

[15] I. Izonin, R. Tkachenko, N. Shakhovska, B. Ilchyshyn, and

K. K. Singh, “A Two-Step Data Normalization Approach

for Improving Classification Accuracy in the Medical

Diagnosis Domain,” Mathematics, vol. 10, no. 11, Jun.

2022, doi: 10.3390/math10111942.

[16] N. ŞENGÖZ, T. YİĞİT, Ö. ÖZMEN, and A. H. ISIK,

“Importance of Preprocessing in Histopathology Image

Classification Using Deep Convolutional Neural Network,”

Advances in Artificial Intelligence Research, vol. 2, no. 1,

pp. 1–6, Feb. 2022, doi: 10.54569/aair.1016544.

[17] P. Desai, J. Pujari, C. Sujatha, A. Kamble, and A. Kambli,

“Hybrid Approach for Content-Based Image Retrieval

using VGG16 Layered Architecture and SVM: An

Application of Deep Learning,” SN Comput Sci, vol. 2, no.

3, May 2021, doi: 10.1007/s42979-021-00529-4.

[18] S. Chakrabarti et al., Compressed Residual-VGG16 CNN

Model for Big Data Places Image Recognition.

[19] H. J. Jie and P. Wanda, “Runpool: A dynamic pooling layer

for convolution neural network,” International Journal of

Computational Intelligence Systems, vol. 13, no. 1, pp. 66–

76, Jan. 2020, doi: 10.2991/ijcis.d.200120.002.

[20] A. Nasiri, A. Taheri-Garavand, and Y. D. Zhang, “Image-

based deep learning automated sorting of date fruit,”

Postharvest Biol Technol, vol. 153, pp. 133–141, Jul. 2019,

doi: 10.1016/j.postharvbio.2019.04.003.

[21] M. F. Hashmi, S. Katiyar, A. G. Keskar, N. D. Bokde, and

Z. W. Geem, “Efficient pneumonia detection in chest xray

images using deep transfer learning,” Diagnostics, vol. 10,

no. 6, Jun. 2020, doi: 10.3390/diagnostics10060417.

[22] A. Zafar et al., “A Comparison of Pooling Methods for

Convolutional Neural Networks,” Sep. 01, 2022, MDPI.

doi: 10.3390/app12178643.

[23] X. Shen et al., “DeepMAD: Mathematical Architecture

Design for Deep Convolutional Neural Network.” [Online].

Available: https://github.com/alibaba/

[24] C. Banerjee, T. Mukherjee, and E. Pasiliao, “The Multi-

phase ReLU Activation Function,” in ACMSE 2020 -

Proceedings of the 2020 ACM Southeast Conference,

Association for Computing Machinery, Inc, Apr. 2020, pp.

239–242. doi: 10.1145/3374135.3385313.

[25] D. Saikrishna et al., “Pneumonia Detection Using Deep

Learning Algorithms,” in Proceedings of 2021 2nd

International Conference on Intelligent Engineering and

Management, ICIEM 2021, Institute of Electrical and

Electronics Engineers Inc., Apr. 2021, pp. 282–287. doi:

10.1109/ICIEM51511.2021.9445310.

[26] H. Zheng, H. Qin, B. Wang, Z. Wu, M. Xiao, and L. Tan,

“Adaptive Friction in Deep Learning: Enhancing

Optimizers with Sigmoid and Tanh Function,” Aug. 2024.

[27] J. Schmidt-Hieber, “Nonparametric regression using deep

neural networks with relu activation function,” Ann Stat,

vol. 48, no. 4, pp. 1875–1897, Aug. 2020, doi: 10.1214/19-

AOS1875.

[28] C. Banerjee, T. Mukherjee, and E. Pasiliao, “An Empirical

Study on Generalizations of the ReLU Activation

Function,” 2019, doi: 10.1145/3299815.

[29] Z. P. Jiang, Y. Y. Liu, Z. E. Shao, and K. W. Huang, “An

improved VGG16 model for pneumonia image

classification,” Applied Sciences (Switzerland), vol. 11, no.

23, Dec. 2021, doi: 10.3390/app112311185.

[30] H. Sadr, M. M. Pedram, and M. Teshnehlab, “Multi-View

Deep Network: A Deep Model Based on Learning Features

from Heterogeneous Neural Networks for Sentiment

Analysis,” IEEE Access, vol. 8, pp. 86984–86997, 2020,

doi: 10.1109/ACCESS.2020.2992063.

[31] S. R. Islam, S. P. Maity, A. K. Ray, and M. Mandal, “Deep

learning on compressed sensing measurements in

pneumonia detection,” Int J Imaging Syst Technol, vol. 32,

no. 1, pp. 41–54, Jan. 2022, doi: 10.1002/ima.22651.

[32] D. O. Melinte and L. Vladareanu, “Facial expressions

recognition for human–robot interaction using deep

convolutional neural networks with rectified adam

optimizer,” Sensors (Switzerland), vol. 20, no. 8, Apr. 2020,

doi: 10.3390/s20082393.

[33]. Usha Ruby Dr.A, “Binary cross entropy with deep learning

technique for Image classification,” International Journal

of Advanced Trends in Computer Science and Engineering,

vol. 9, no. 4, pp. 5393–5397, Aug. 2020, doi:

10.30534/ijatcse/2020/175942020.

[34] M. Toğaçar, B. Ergen, Z. Cömert, and F. Özyurt, “A Deep

Feature Learning Model for Pneumonia Detection

Applying a Combination of mRMR Feature Selection and

Machine Learning Models,” IRBM, vol. 41, no. 4, pp. 212–

222, Aug. 2020, doi: 10.1016/j.irbm.2019.10.006.

[35] D. Krstinić, M. Braović, L. Šerić, and D. Božić-Štulić,

“Multi-label Classifier Performance Evaluation with

Confusion Matrix,” Academy and Industry Research

Collaboration Center (AIRCC), Jun. 2020, pp. 01–14. doi:

10.5121/csit.2020.100801.

[36] I. Kandel and M. Castelli, “The effect of batch size on the

generalizability of the convolutional neural networks on a

histopathology dataset,” ICT Express, vol. 6, no. 4, pp. 312–

315, Dec. 2020, doi: 10.1016/j.icte.2020.04.010.

