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Abstract  

Auto-scaling systems in cloud computing are important for handling application workload fluctuations. This research uses 
machine learning to predict resource requirements based on workload work patterns and design an automatic scaling system. 
The dataset used includes features of node name, time, CPU usage percentage, and RAM usage. The ML model is applied for 
prediction regression of CPU usage percentage, CPU load, and RAM usage, and then the server workload is classified into 
four categories: Very High, High, Low, and Very Low. The autoscaling system used is horizontal scaling. From the results of 
this research, it was found that the stacking algorithm with the base learner Random Forest and XGBoost had better 
performance in producing predictive regression. Then, after performing stability testing using K-Fold cross-validation by 
classifying based on workload status, it was found that the Gradient Boosting algorithm had better results compared to other 
algorithms, namely for the percentage of CPU usage with an accuracy of 0.998, precision 0.9, recall 0.878, f1score 0.888; 
CPU load average 15 minutes with accuracy 0.997, precision 0.854, recall 0.863, f1score 0.863; Meanwhile, the percentage 
of RAM usage is accuracy 0.992, precision 0.986, recall 0.986, and f1score 0.986. However, the XGBoost algorithm also has 
test results that are almost the same as Gradient Boosting. 
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1. Introduction  

The increasingly rapid development of the digital 
industry and the need for flexible computing 
infrastructure means that Cloud Computing services 
have become the main choice. Service Cloud, otherwise 
known as Infrastructure as a Service (IaaS). To optimize 
system performance and avoid wasting resources, 
practice auto-scaling has become popular. Auto-scaling 
enables infrastructure Cloud to automatically adjust 
computing capacity according to workload fluctuations. 
In this case adding or reducing resources such as CPU, 
RAM, or storage dynamically either by mechanism 
vertical scaling or horizontal scaling automatically. 

Despite the concept that auto-scaling is well known, 
implementation often requires a deep understanding of 
workload patterns, as well as careful monitoring. 
Therefore, implementation machine learning can be 

used to manage auto-scaling for the Infrastructure 
Cloud. 

Research conducted [1] by Balantimuhe et al conducted 
research on cloud node resource management based on 
server workload parameters (CPU processor usage). 
The server workload is classified into 3 status groups, 
namely low, medium and high. In developing the 
prediction model, use the Backpropagation Neural 
Network (BNN) model, with several data features on 
CPU usage, RAM, network traffic and accuracy 
performance of more than 90%. 

In 2018 [2] there was research to automate predictions 
based on actual workload patterns and resources 
obtained from historical data on existing service data. 
The prediction model used is Naive Bayes. Adane and 
Kakde [3] conducted research related to auto scalability 
using machine learning methods to predict resource 
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usage such as CPU and memory in a cloud system 
environment. The algorithm of machine learning which 
is used is Random Forest. Algorithm Random Forest 
has good performance compared to other algorithms, 
such as LinearrRegression, k-NN, Neural Networks, 
and SVM. The experimental results produce a learning 
model Random Forest that has lower prediction 
regression error tolerance and lower resource usage 
time compared to other models. 

Research by Khaleq, et al in 2021 [4] developed a smart 
autonomous automatic scaling system for automatic 
scaling microservice of the cloud with QoS constraints, 
using the method of Reinforcement Learning (RL). 
Provides customized auto-scaling results for 
microservice in cloud applications by paying attention 
to the minimum QoS constraints perceived by the user. 

Furthermore, research conducted in 2022 [5] is 
a constructive machine learning (ML) model to make 
predictions for computing workload patterns on the 
server farm based on data from time to time 
from previously appropriate computing activities. 
Building models using models SVM. Testing is carried 
out to obtain accurate regression predictions, and 
comparisons are made with the model and other 
machine learning. Other machine learning models used 
Gaussian Naive Bayes and obtained better accuracy 
prediction results using SVM. 

Iqbal W, et al [6] Conducted research on the use of 
varying-performance Virtual Machines (VM) to 
perform automatic scaling in dealing with dynamic and 
fluctuating workloads. Its predictive modelling uses 
a Random Decision Forest (RDF) based on resource 
configuration, number of requests, and response time. 
Comparing algorithms Random Decision Forest (RDF) 
with AdaBoost, SVM, Naive Bayes, and K-NN 
algorithms. And getting results from RDF has better 
performance.  

Manam S, et al [7] Conducted research on the automatic 
scaling method used, namely the Random Forest 
Classifier method, which is a supervised classifier 
model that uses a decision tree creation algorithm. Each 
tree in the Random Forest Classifier will produce a 
prediction, and the best prediction will be selected 
based on the number of votes from each tree. This 
method can produce better CPU and memory 
predictions compared to other algorithms.  

Within the framework of this research, the aim is to 
develop and test an auto-scaling system prediction 
automation algorithm that can intelligently adjust Cloud 
resources based on dynamic analysis of computing 
workloads by utilizing several algorithms. Machine 
Learning (ML) to look for good performance and 
processes auto-scaling use horizontal scaling. 

2. Research Methods 

The stages that will be carried out in the research are as 
follows in Figure 1. 

 
Figure 1. Research Block Diagram 

2.1 System Analysis 

System analysis is carried out to find out problems with 
the architecture and implementation of the previous 
system as in Figure 2, and to find out what is needed to 
overcome these problems. 

 
Figure 2. Existing Architecture 

Users access the application there is a firewall (WAF) 
before accessing the server. After passing through the 
WAF, it is forwarded to the Reverse Proxy (RP). From 
the Reverse Proxy (RP) the request is forwarded to the 
destination application server VM according to its 
domain. The application VM is connected to its 
database (DB) 

There was a problem with the previous system 
architecture, namely that there was no mechanism that 
automatically adjusted the resources in the application 
VM according to needs. When workload fluctuations 
occur in applications on a VM that are accessed with a 
high workload, it causes the application process on the 
VM to become slow or even inaccessible. 

To minimize the impact of workload fluctuations on a 
VM, leveraging machine learning in the system 
autoscaling is one solution. Machine learning will 
analyze historical data to predict server workload. 
System auto-scaling The mechanism used is horizontal 
scaling, capacity adjustment is carried out by increasing 
or decreasing the number of VMs horizontally, without 
changing the capacity of each VM itself. [8][9][10]. 
Election horizontal scaling from vertical scaling is to 
minimize downtime during the process auto-scaling is 
running, because on vertical scaling Capacity 
adjustments are carried out by increasing the resource 
capacity of the running VM and requiring a restart of 
the VM itself. 

2.2 Data Analysis 

The detailed dataset used consists of 15 features 
according to Table 1 To characterize workloads to form 
a system prediction model auto-scaling. The selected 
feature is a performance indicator of a node in the data 
centre cloud. 
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Table 1. Dataset Features Used 

No Feature Name Description 
1 Node_name Cloud node name 
2 Day_of_week Day of the week (1-7) 
3  Time_only Time 
4 Day_number Days of the month (1-31) 
5 Cpu_load_avg_1_min Average CPU Load per 1 

minute 
6 Cpu_load_avg_5_mins Average CPU Load per 5 

minutes 
7 Cpu_load_avg_15_mins Average CPU Load per 15 

minutes 
8 Cpu_usage_percentage CPU Usage Percentage 
9 Ram_used RAM/memory used (MB) 
10 Ram_total RAM/memory total (MB) 
11 Ram_usage_percentage RAM usage percentage 
12 Disk_used Storage used (GB) 
13 Disk_total Total storage (GB) 
14 Net_packet_send Download bandwidth 

(MiB/s) 
15 Net_packet_received Upload bandwidth (MiB/s) 
16 Label Server workload status 

Dataset retrieval mechanism for the system auto-scaling 
carried out on 10 virtual machines (VM) according to 
Figure 3 with data features according to Table 1 Is 
carried out every 15 minutes. The dataset was labelled 
using the criteria according to Table 2 [2]. After the data 
has been collected and labelled, the workload status is 
then sent to the machine learning Forecasting server to 
be formed into a dataset for the training process later. 

Table 2. Performance Criteria and Percentage of Capacity 
Utilization 

No Performance Criteria Percentage of Usage Capacity 
1. ‘Very Low‘ 0%-25% 
2. ‘Low‘ 25%-50% 
3. ‘High‘ 50%-75% 
4. ‘Very High‘ 75%-100% 

 
Figure 3. The process of collecting data into datasets 

2.3 System Architecture Design 

Following in Figure 4 Is the system architecture design 
autoscaling generally uses a horizontal scaling 
mechanism by monitoring the workload on the 
application server [11]. 

 
Figure 4. Auto-Scaling System Architecture 

The difference from the previous architecture is that 
there is Machine Learning Forecasting. [12], which is 
used to monitor workload Application server VMs, and 
perform predictions and triggers to perform resource 
scalability, either adding resources (scale-up) 
horizontally, namely doing clone VM, or reducing 
resources (scale-down) according to the results of the 
monitored server workload prediction classification. 

2.4 Prediction Model System Design 

Designing a prediction model is part of system design 
by the previous system architecture design. The 
prediction model is formed based on previously 
collected datasets, which include features such as 
timestamp, CPU-processor percentage, RAM usage, 
disk usage, and traffic bandwidth. Here are the steps to 
take: 

Feature Extraction from Timestamp: Extracted features 
traction as in Table 3 Includes days of 1 week and the 
date is within 1 month, which allows the model to 
understand time-based work patterns. 

Table 3. Prediction Model Building Feature Data 

No Feature Name Description 
1 Node_name Cloud node name 
2 Day_of_week Day of the week (1-7) 
3  Time_only Time (hh:mm: ss) 
4 Day_number Days of the month (1-31) 
5 Ram_total RAM/memory total (MB) 
6 Disk_total Total storage (GB) 

Unchanging Features: Some features such as total 
RAM, total storage, and node names do not change over 
time and are considered fixed features as in Table 3. 

Predicted Features: The features whose values will be 
predicted are CPU workload estimates, CPU usage, 
memory usage, and bandwidth usage. According to 
Table 4. 

Table 4. Prediction Model Target Class Data 

No Target Description 
1 Cpu_load_avg_15_mins Average CPU Load per 

15 minutes 
2 Cpu_usage_percentage CPU Usage Percentage 
3 Ram_usage_percentage RAM usage percentage 

Prediction Model Building: The prediction model used 
by several algorithms [12] based on the results of 
previous research produces good performance among 
the algorithms ensemble learning [13][14][15] among 
others Random Forest [16], Gradient Boosting [17], 
XGBoost [18], as well as the algorithm Neural 
Network[19][20] i.e ‘Multi-LayerrPerceptron’(MLP) 
[20] and Long-Short-Term-Memory (LSTM) [21]. The 
model is trained to learn patterns from the extracted 
features and predict unknown values based on these 
features. Figure 5 shows the general stages of machine 
learning, in which datasets are grouped into 2 subsets of 
data, namely the training subset and the testing subset, 
from the training data is carried out to form an ML 
model using the algorithm mentioned previously. Then 
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make predictions using the testing data that has been 
prepared. 

 
Figure 5. General Stages of Machine Learning (ML) 

Classification of results from prediction regression: 
after getting the performance results from the best 
model, the results of the predictive regression are then 
classified according to the criteria in Table 2 and Figure 
6. If the regression prediction results are less than 25% 
they will be categorized as very low, less than 50% be 
low, less than 75% be high, and above it becomes very 
high. 

 
Figure 6. Prediction result classification criteria 

2.5 Automation System Design 

The mechanism for sending workload data is carried out 
according to Figure 7 Process of monitoring workload 
data from Virtual Machine (VM). The VM being 
monitored will send its workload status data according 
to the parameters in Table 3 and Table 4 To the ML 
Forecasting server. This process is carried out every 15 
minutes. 

 
Figure 7. The process of monitoring workload data from VM 

Then ML System Forecasting analyzes this data and 
predicts workload status for some time in the future. ML 
mechanism Forecasting as in Figure 8 Process 
forecasting data workload From the VM being 
monitored, the ML Forecasting server performs 
workload predictions, after generating the workload 
prediction status then triggers the Jenkins server to carry 
out scale-up or scale-down. 

Jenkins does auto-scaling with a horizontal-scaling 
mechanism, which clones the monitored server up to a 
certain number. On Jenkins, there are 2 jobs doing 
scale-up and scale-down and configuring Load 
Balancing.[22], [23], [24] according to Figure 9 To the 
resulting VM auto-scaling.  

 
Figure 8. Workload data forecasting process of monitored VM 

 
Figure 9. Reverse Proxy Server and Load Balancing 

2.5 Implementation and Testing 

At this stage, implementation is carried out based on 
architectural design and infrastructure design cloud to 
be built, the automation system auto-scaling, and 
forecasting machine learning will be combined, then 
system testing of the system will be carried out auto-
scalinghis.  

Testing is carried out to test the prediction results using 
MSE, MAE, and Correlation Coefficient. [25] [26]. 
Testing the classification results uses the method of k-
fold cross-validation which uses a confusion matrix to 
get the value of accuracy, precision, recall, and f1 score. 
[27]. 

3. Results and Discussions 

3.1 Dataset Characteristics 

 
Figure 10. Correlation Heatmap Between Dataset Features 

The dataset used from March to the end of May 2024 
amounts to 78044 data originating from 10 cloud nodes. 
Based on the dataset that has been collected, the 
correlation between the features is obtained as follows 
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in Figure 10. It is found that CPU Usage and CPU Load 
are certainly highly correlated, and s based on 
correlation value. 

After measuring the workload correlation between 
servers to determine the connectiv, isity between 
servers according to the dataset, the correlation matrix 
results were obtained for CPU usage, average CPU load 
in 15 minutes, and RAM usage as follows in Figure 11, 
Figure 12, Figure 13. From the results of Figure 11, it is 
obtained that the correlation between servers from the 
percentage of CPU usage still has a relationship that can 
be said to be high, especially in VM 0 and 1; VM 0 and 
6; VM 1 and 6; and VM 3 and 5. 

 
Figure 11. Correlation Heat CPU Usage Between Nodes 

From Figure 12, the CPU load load shows that the 
server has a weak correlation. Meanwhile, in Figure 13, 
the percentage of RAM usage shows various strong and 
weak correlations, which correlate or can be said to 
have a connection, namely VM 0 and 6; VM 0 and 8; 
VM 3 and 8; VM 6 and 8; as well as VM 8 and 9. From 
the results of determining the correlation, it can be 
concluded that in general the workload between one 
server and another server is connected or influences 

each other, so that in making a prediction model you can 
utilise the dataset from each cloud node, to predict 
the workload of another server. 

 
Figure 12. Correlation Heat CPU Load 15 Minutes Between Nodes 

 
Figure 13. Correlation Heat RAM Usage Between Nodes 

Table 5. Specifications of The Tools Used 

Server Tools Proxmox Cluster  Jenkins NGINX Forecasting Server App Server 
OS Debian 11  Debian 11  CentOS 7 Ubuntu 22 CentOS 7 
CPU 68 * 2.10 GHz 4 * 2.10 GHz 4 * 2.10 GHz 6 * 2.10 GHz 4 * 2.10 GHz 
RAM 85 GB 4 GB 8 GB 4 GB 4 GB 
Disk 8 TB 500GB 500 GB 100 GB 100 GB 

The implementation of the system design required for 
hardware and software is as follows in Table 5. The 
following are the results of the implementation of 
Jenkins to carry out VM scale-up and scale-down jobs, 
wherein each job there is a stage or stages carried out 
by Jenkins in handling VM auto-scaling according to 
Table 6. From the results of implementing Jenkins, it 
takes approximately 6-8 minutes to carry out the 
process scale-up and takes around 1-2 minutes to carry 
out the process scale-down. 

 

Table 6. State Scaling Processes And Time 

No State 
Scaling 

Takes 
Time 

Stages 

1 Scale-
Up 

6min 
15s 

Clone VM; Configure Reverse Proxy; 
Reload Reverse Proxy 

2 Scale-
Down 

1min 
53s 

Configure Reverse Proxy; Reload 
Reverse Proxy; Remove Clone VM 
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3.2 Implementation and Testing of Forecasting Model 

Before performing the forecasting process: based on 
the status workload from the VM being monitored 
according to the process in Figure 8. Then the dataset 
that was previously obtained was divided into 2 data 
subsets, namely 70% ‘training-subset, and 30% testing-
subset. The following are the results of the distribution 
plot of the percentage of CPU usage in Figure 14, CPU 
Load in Figure 15 RAM usage is shown in Figure 16 for 
each node cloud. 

 
Figure 14. Time-series graph of CPU usage percentage 

 
Figure 15. Time-series graph of CPU Load percentage Average 15 

minutes 

 

Figure 16. Time-series graph of RAM usage percentage 

The results of the distribution of CPU usage from 
Figure 14 show an unbalanced distribution of workload 
status data, where the distribution data is in the same 
data status workload Very Low and Low (usage less 
than 50%) is very large compared to High or Very High 
status (more than 50% usage) of each node. From the 
results of the data distribution in Figure 15, it is found 
that the CPU load of 15 minutes is very low (less than 
0.25 or 25%) and greater than the other workload 

statuses, resulting in an unbalanced data distribution 
from each status for each node. 

From the results of the distribution of time-series data 
for RAM percentage usage in Figure 16, we get a 
distribution that can be said to be even between each 
workload status, namely Very Low, Low, High, and 
Very High. 

Testing is needed in the selection of machine learning 
algorithms: which have good performance. Algorithm 
comparison machine learning used is the model 
ensemble learning that is Random Forest Regressor 
(Bagging), Gradient Boosting (Boosting), Extreme 
Gradient Boosting (XGBoost), and Stacking which 
combines between Random Forest and XGBoost 
(Bagging then Boosting). Apart from algorithms 
ensemble learning is Also used as the algorithm of the 
algorithm Neural Networks, MLP and LSTM. Before 
testing the results of the algorithm, first, create a model 
that uses 70% of the data from the dataset resource 
cloud node which is used as training data. Then, after 
the model is formed, the prediction regression results 
are tested using 30% of the data from the remaining 
dataset as testing data. 

The following is a graphic comparison of the plot 
between the predicted values produced by each 
algorithm and the actual values. Test data samples are 
taken based on testing data (30% of the previous dataset 
as testing data) and then some data is taken from each 
data quartile (Q1, Q2, Q3, Q4).  

 
Figure 17. Comparison chart of predicted and actual CPU usage 

Figure 17 shows the regression results of CPU usage 
predictions compared to the actual values for each 
algorithm. From Figure 17, which is the result of the 
CPU usage test data samples used, totalling 34 test data 
samples, you can see at a glance that the results have 
good predictions, namely XGBoost (purple) because 
the prediction results are almost close to the actual 
value. At first glance, MLP seems to have poor results 
compared to other algorithms. 

Figure 18 shows the regression results of CPU Load 
predictions per 15 minutes compared to the actual 
values for each algorithm. From Figure 18, the results 
of the CPU Load test data samples averaged 15 minutes, 
totalling 27 sample data that have good performance, 
namely Gradient Boosting (blue). 
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Figure 18. Comparison chart of predicted and actual CPU load 

average of 15 minutes 

 
Figure 19. Comparison chart of predicted and actual RAM usage 

From Figure 19, which is the result of testing samples 
of RAM usage totalling 39 samples, which has good 
performance at a glance, namely XGBoost (pink 

colour) because the prediction results are almost close 
to the actual value. 

Performance testing results of prediction regression 
using the above algorithm: The following are the results 
of performance testing from predictive regression using 
the algorithm to produce CPU usage predictions in 
Table 7. From the results of testing the CPU usage 
regression prediction performance in it is found that the 
Stacking model (RF and XGBoost) has better 
regression prediction performance. It can be seen that 
the lowest MSE results are 0.00083 in Stacking (RF and 
XGB), the lowest RMSE is 0.02882 in Stacking (RF 
and XGB), the lowest RAE is 0.00002 in Stacking (RF 
and XGB), and the highest coefficient of determination 
is 0.59887. 

In the performance testing results from the regression of 
CPU load predictions for an average of 15 minutes in 
Table 8 Using several algorithms and machine learning. 
From the results of the CPU load regression prediction 
performance test for an average of 15 minutes, it was 
found that the lowest MSE was Stacking (RF and 
XGB), namely 0.00064, the lowest RMSE was 0.02536 
Stacking (RF and XGB), the lowest RRSE is 0.43756 
Stacking (RF and XGB), and the highest coefficient of 
determination is Stacking (RF and XGB). So it can be 
concluded that the best prediction is the Stacking 
algorithm (Random Forest and Extreme Gradient 
Boosting). However, if you look at the previous 
comparison graph, the Random Forest algorithm has 
almost similar performance to Stacking (RF and XGB) 
and has a difference that can be said to be small. 

Table 7. CPU Usage Prediction Performance Evaluation Results 

Algorithm MSE RMSE MAE RSE RRSE RAE R2 
GB 1.35x10-3 0.037 7.65x10-3 0.65 0.81 2.61x10-5 0.35 
LSTM 1.07x10-3 0.033 8.85x10-3 0.52 0.72 3.01x10-5 0.48 
MLP 1.30x10-3 0.036 9.89x10-3 0.63 0.79 3.37x10-5 0.37 
RF 9.21x10-4 0.03 6.99x10-3 0.44 0.67 2.38x10-5 0.56 
Stacking (RF_XGB) 8.30x10-4 0.029 7.06x10-3 0.4 0.63 2.40x10-5 0.6 
XGBoost 1.18x10-3 0.034 7.52x10-3 0.57 0.76 2.56x10-5 0.43 

Table 8. CPU Load Average 15 Minutes Prediction Performance Evaluation Results 

Algorithm MSE RMSE MAE RSE RRSE RAE R2 
GB 9.14x10-4 0.0302 5.79x10-3 0.272 0.522 1.44x10-5 0.728 
MLP 1.14x10-3 0.0337 7.67x10-3 0.338 0.581 1.91x10-5 0.662 
LSTM 1.02x10-3 0.0319 7.86x10-3 0.304 0.551 1.95x10-5 0.696 
RF 6.52x10-4 0.0255 5.67x10-3 0.194 0.441 1.41x10-5 0.806 
Stacking (RF_XGB) 6.43x10-4 0.0254 5.94x10-3 0.191 0.438 1.48x10-5 0.809 
XGBoost 9.04x10-4 0.0301 5.93x10-3 0.269 0.519 1.48x10-5 0.731 

Table 9. RAM Usage Prediction Performance Evaluation Results 

Algorithm MSE RMSE MAE RSE RRSE RAE R2 
GB 2.12x10-3 0.046  0.008  2.65x10-2 0.163  1.49x 10-6 0.973  
LSTM 2.00x10-3 0.045  0.015  2.50x10-2 0.158  2.75x 10-6 0.975  
RF 1.44x10-3 0.038  0.008  1.81x10-2 0.134  1.45x 10-6 0.982  
MLP 3.28x10-3 0.057  0.026  4.11x10-2 0.203  4.67x 10-6 0.959  
Stacking (RF_XGB) 1.44x10-3 0.038  0.009  1.81x10-2 0.134  1.53x 10-6 0.982  
XGBoost 1.96x10-3 0.044  0.009  2.46x10-2 0.157  1.62x 10-6 0.975  

The performance test results from the RAM usage 
prediction regression in Table 9 use several algorithms 
and machine learning. From the results of testing the 

regression prediction performance of RAM usage in 
Table IX, the lowest MSE is 0.00144, namely Stacking 
(RF and XGB), the lowest RMSE is 0.03799 Stacking 
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(RF and XGB), the lowest RRSE is 0.13436 in Stacking 
(RF and XGB), the highest coefficient of determination 
is 0.98195 in Stacking (RF and XGB). 

Classification of the results of prediction regression: 
After regressing the predicted values from CPU usage, 
CPU Load, and RAM usage, the values were then 
classified into workload status according to Figure 6. 
The confusion metrics were obtained based on the 
classification test. 

Table 10 are the results of testing the CPU usage 
classification of each algorithm. An algorithm that has 
good performance is obtained, namely Random Forest 
with an accuracy value of 0.9958, precision of 0.7276, 
recall of 0.539 and f1 score of 0.5875. 

Table 10. CPU Usage Classification Performance 

Algorithm Accuracy Precision Recall F1-Scoree 
GB 0.9949  0.6670  0.6085  0.6325  
LSTM 0.9953  0.6685  0.4754  0.5195 
RF 0.9958 0.7276  0.5390  0.5875  
Stacking 
(RF_XGB) 

0.9956 0.4988  0.4672  0.4679 
XGBoost 0.9947  0.6536  0.5744  0.5922 
MLP 0.9943 0.4782   0.3013 0.3302  

Table 11 are the results of the average CPU Load 
classification test per 15 minutes for each algorithm. It 
was found that Random Forest had better performance, 
with an accuracy value of (0.9920), precision (0.6586), 
recall (0.5820), and ff1-score (0.6098). 

Table 11. CPU Load Average 15 Minutes Classification 
Performance 

Algorithm Accuracy Precision Recall F1-Scoree 
GB 0.9915  0.5810  0.6096  0.5946   
RF 0.9920  0.6586   0.5820  0.6098 
Stacking 
(RF_XGB) 

0.9919  0.6555   0.5878  0.6104  
XGBoost 0.9906  0.5806   0.5760  0.5776 
LSTM 0.9906   0.6308   0.5475  0.5821 
MLP 0.9907 0.6132  0.4352 0.4946  

Table 12 Are the results of RAM usage classification 
testing for each algorithm. It was found that Random 
Forest had high precision (0.9607) and f1-score 
(0.9550) and Gradient Boosting had high accuracy 
(0.9732) and recall (0.9533). 

Table 12. RAM Usage Percentage Classification Performance 

Algorithm Accuracy Precision Recall F1-Scoree 
GB 0.9732  0.9549  0.9533  0.9541  
RF 0.9728  0.9607  0.9497  0.9550  
Stacking 
(RF_XGB) 

0.9715  0.9554  0.9481  0.9516  

XGBoost 0.9707  0.9548  0.9474  0.9510  
LSTM 0.9449  0.9072  0.8884  0.8970  
MLP 0.9152  0.8641  0.8096  0.8272  

To test the stability of the classification performance 
results, the k-fold validation test is used by dividing the 
dataset into several subsets called folds. This test is 
carried out to test the consistency of machine learning 
algorithm model results which is formed. The dataset is 
separated into 5 fold subsets, then classification testing 
is carried out. 

 
Figure 20. K-Fold results of the classification test of CPU usage 

Table 13. Average Performance Results of CPU Usage 
Classification Using K-Fold Validation 

Algorithm Accuracy Precision Recall F1-Scoree 
GB 0.9985  0.9000  0.8780  0.8882  
LSTM 0.9957  0.6869  0.5077  0.5481  
MLP 0.9943  0.4989  0.3041  0.3359  
RF 0.9973  0.8285  0.6550  0.7098  
Stacking 
(RF_XGB) 

0.9965  0.8029  0.5402  0.5740  

XGBoost 0.9984  0.8970  0.8595  0.8747  

Figure 20 is a graphic plot of accuracy, precision, recall 
and f1score from the k-fold cross-validation test for the 
percentage of CPU usage carried out in 5-fold 
validation. From the results in the graphic image, it was 
found that those with better test results were the 
Gradient Boosting and XGBoost algorithms. 

From the graph in Figure 20, the average accuracy, 
precision, recall and f1score of each validation fold 
were then calculated. The results obtained as follows: in 
Table 13 are the average test results. k-fold cross-
validation for CPU usage. An algorithm with better and 
more stable performance was obtained, namely 
Gradient Boosting (GB), with an accuracy value of 
(0.998), precision (0.9), recall (0.878), and f1-score 
(0.888). However, the Extreme Gradient Boosting 
(XGBoost) algorithm has almost similar performance to 
Gradient Boosting (GB). 

Figure 21 shows a plot graph of accuracy, precision, 
recall and f1score from the k-fold cross-validation test 
for CPU Load on average for 15 minutes carried out in 
5-fold validation. From the results in the graphic image, 
it was found that the test results were better, namely the 
Gradient Boosting algorithm, but XGBoost also had 
almost similar test results. 

From the graph plot in Figure 21, the results of k-fold 
validation are then displayed perform an average 
calculation for accuracy of several of the models used, 
precision, recall, and f1score are contained in Table 14 
are the results of k-fold validation testing for a CPU 
Load of 15 minutes. An algorithm with better and more 
stable performance was obtained, namely Gradient 
Boosting (GB), with an accuracy value of (0.997), 
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precision (0.854), recall (0.873), and f1-score (0.863). 
However, the Extreme Gradient Boosting (XGBoost) 
algorithm has almost similar performance to Gradient 
Boosting (GB). 

 
Figure 21. K-Fold results of the classification test of CPU load 

average 15 minutes 

Table 14. Average Performance Results of Cpu Load Average 15 
minutes Classification Using K-Fold Validation 

Algorithm Accuracy Precision Recall F1-Scoree 
GB 0.9985  0.9000  0.8780  0.8882  
LSTM 0.9957  0.6869  0.5077  0.5481  
MLP 0.9943  0.4989  0.3041  0.3359  
RF 0.9973  0.8285  0.6550  0.7098  
Stacking 
(RF_XGB) 

0.9965  0.8029  0.5402  0.5740  

XGBoost 0.9984  0.8970  0.8595  0.8747  

 
Figure 22. K-Fold results of the classification test of RAM usage 

percentage 

Figure 22 shows a plot graph of accuracy, precision, 
recall and f1score from the k-fold cross-validation test 
for the percentage of RAM usage carried out in 5-fold 
validation. From the results in the graphic image, it was 
found that those with better test results were the 
Gradient Boosting and XGBoost algorithms. 

Then, from the graph in Figure 22, the average 
calculation of the ‘5-fold_validationn results for 
evaluation-metrics as in Table 15 is the test result. k-

fold cross-validation for RAM usage. An algorithm 
with better and more stable performance was obtained, 
namely Gradient Boosting (GB), with an accuracy 
value of (0.992), precision (0.986), recall (0.986), and 
f1-scoree(0.986). However, the Extreme Gradient 
Boosting (XGBoost) algorithm has almost similar 
performance to Gradient Boosting (GB). 
Table 15. Average Performance Results of RAM Usage Percentage 

Classification Using K-Fold Validation 

Algorithm Accuracy Precision Recall F1-Scoree 
GB 0.9918  0.9859  0.9857  0.9858  
MLP 0.9164  0.8622  0.8153  0.8310  
RF 0.9850  0.9782  0.9722  0.9751  
XGBoost 0.9910  0.9860  0.9838  0.9848  
LSTM 0.9482  0.9109  0.8927  0.9011  
Stacking 
(RF_XGB) 

0.9824  0.9712  0.9678  0.9695  

4. Conclusions 

From the results of the implementation and analysis in 
this research, it was found that the Stacking algorithm 
uses a base learner, namely Randon Forest However, 
when classifying cloud computing workload status, 
there are 4 statuses, namely: Very High, High, Low, and 
Very Low It was found that the Random Forest 
algorithm produced relatively better accuracy, 
precision, recall and f1-score values. Then, after 
carrying out stability testing using K-Fold Cross 
Validation for classification based on workload status, 
it was found that the Gradient Boosting algorithm had 
relatively better results among other algorithms, namely 
for the percentage of CPU usage with an accuracy of 
0.998, precision 0.9, recall 0.878, f1score 0.888; CPU 
Load average 15 minutes with accuracy 0.997, 
precision 0.854, recall 0.863, f1score 0.863; 
Meanwhile, the percentage of RAM usage is accuracy 
0.992, precision 0.986, recall 0.986, and f1score 0.986. 
However, the XGBoost algorithm also has test results 
that are almost close to the results of Gradient Boosting. 

In the future, it is hoped that this paper can be developed 
by implementing a deep learning model in depth to train 
the model, with the hope that the deep learning model 
used will produce even better tests. 

Acknowledgements  

Support and funding for the publication of this paper 
were provided by the Indonesian Ministry of 
Communications and Information Republic Indonesia 
(KOMINFO RI) and for that we thank you. 

References 
[1] A. S. Balantimuhe, S. H. Pramono, and H. Suyono, 

“Konsolidasi Beban Kerja Kluster Web Server Dinamis dengan 
Pendekatan Backpropagation Neural Network,” Jurnal EECCIS 
(Electrics, Electronics, Communications, Controls, Informatics, 
Systems), vol. 12, no. 2, pp. 72–77, Sep. 2018, doi: 
10.21776/jeeccis.v12i2.536. 

[2] A. M. Al-Faifi, B. Song, M. M. Hassan, A. Alamri, and A. 
Gumaei, “Performance prediction model for cloud service 
selection from smart data,” Future Generation Computer 



Tri Fidrian Arya, Reza Fuad Rachmadi, Achmad Affandi  
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)  

 
This is an open access article under the CC BY-4.0 license                                                                                 606 
 

Systems, vol. 85, pp. 97–106, Aug. 2018, doi: 
10.1016/j.future.2018.03.015. 

[3] P. D. Adane and O. G. Kakde, “Predicting Resource Utilization 
for Cloud Workloads Using Machine Learning Techniques,” in 
Proceedings of the 2nd International Conference on Inventive 
Communication and Computational Technologies (ICICCT), 
2018, pp. 1372–1376. 

[4] A. A. Khaleq and I. Ra, “Intelligent Autoscaling of 
Microservices in the Cloud for Real-Time Applications,” IEEE 
Access, vol. 9, pp. 35464–35476, 2021, doi: 
10.1109/ACCESS.2021.3061890. 

[5] S. T. Singh, M. Tiwari, and A. S. Dhar, “Machine Learning 
based Workload Prediction for Auto-scaling Cloud 
Applications,” in 2022 OPJU International Technology 
Conference on Emerging Technologies for Sustainable 
Development, OTCON 2022, Institute of Electrical and 
Electronics Engineers Inc., 2023. doi: 
10.1109/OTCON56053.2023.10114033. 

[6] W. Iqbal, A. Erradi, M. Abdullah, and A. Mahmood, “Predictive 
Auto-Scaling of Multi-Tier Applications Using Performance 
Varying Cloud Resources,” IEEE Transactions on Cloud 
Computing, vol. 10, no. 1, pp. 595–607, 2022, doi: 
10.1109/TCC.2019.2944364. 

[7] S. Manam, K. Moessner, and P. Asuquo, “A Machine Learning 
Approach to Resource Management in Cloud Computing 
Environments,” in IEEE AFRICON Conference, Institute of 
Electrical and Electronics Engineers Inc., 2023. doi: 
10.1109/AFRICON55910.2023.10293275. 

[8] R. A. ) Eric Bauer, Reliability and Availability of Cloud 
Computing. Wiley-IEEE Press, 2012. 

[9] V. Millnert and J. Eker, “HoloScale: horizontal and vertical 
scaling of cloud resources,” in 2020 IEEE/ACM 13th 
International Conference on Utility and Cloud Computing 
(UCC), 2020, pp. 196–205. doi: 
10.1109/UCC48980.2020.00038. 

[10] C.-Y. Liu, M.-R. Shie, Lee Yi-Fang, and K.-C. Lai, ICISA 
2014 : 2014 Fifth International Conference on Information 
Science and Applications : 6-9 May, 2014, Seoul, Korea. 2014. 

[11] J. Bi et al., “Application-Aware Dynamic Fine-Grained 
Resource Provisioning in a Virtualized Cloud Data Center,” 
IEEE Transactions on Automation Science and Engineering, 
vol. 14, no. 2, pp. 1172–1184, 2017, doi: 
10.1109/TASE.2015.2503325. 

[12] V. P. M. Arif Wani, Deep Learning Applications, Volume 4. in 
Advances in Intelligent Systems and Computing, 1434. 
Springer, 2023. 

[13] T. G. Dietterich, “Ensemble Methods in Machine Learning,” in 
Multiple Classifier Systems, Berlin, Heidelberg: Springer Berlin 
Heidelberg, 2000, pp. 1–15. 

[14] I. D. Mienye and Y. Sun, “A Survey of Ensemble Learning: 
Concepts, Algorithms, Applications, and Prospects,” IEEE 
Access, vol. 10, pp. 99129–99149, 2022, doi: 
10.1109/ACCESS.2022.3207287. 

[15] C. Zhao, R. Peng, and D. Wu, “Bagging and Boosting Fine-
Tuning for Ensemble Learning,” IEEE Transactions on 
Artificial Intelligence, vol. 5, no. 4, pp. 1728–1742, 2024, doi: 
10.1109/TAI.2023.3296685. 

[16] L. Breiman, “Random Forests,” Mach Learn, vol. 45, no. 1, pp. 
5–32, Oct. 2001, doi: 10.1023/A:1010933404324. 

[17] J. H. Friedman, “Greedy function approximation: A gradient 
boosting machine.,” The Annals of Statistics, vol. 29, no. 5, pp. 
1189 – 1232, 2001, doi: 10.1214/aos/1013203451. 

[18] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting 
System,” in Proceedings of the 22nd ACM SIGKDD 
International Conference on Knowledge Discovery and Data 
Mining, in KDD ’16. New York, NY, USA: Association for 
Computing Machinery, 2016, pp. 785–794. doi: 
10.1145/2939672.2939785. 

[19] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol. 
5, no. 2, pp. 241–259, 1992, doi: https://doi.org/10.1016/S0893-
6080(05)80023-1. 

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. 
MIT Press, 2016. 

[21] S. Hochreiter and J. Schmidhuber, “Long Short-Term 
Memory,” Neural Comput, vol. 9, no. 8, pp. 1735–1780, Jul. 
1997, doi: 10.1162/neco.1997.9.8.1735. 

[22] S. Sharma, R. Garg, and D. K. Lobiyal, “Load Balancing 
Algorithms in Cloud Computing: A Comparative Study,” 
International Journal of Advanced Research in Computer 
Science and Software Engineering, 2014. 

[23] S. Muthukrishnan and V. Sankaranarayanan, “A Survey of Load 
Balancing Techniques in Cloud Computing Environments,” 
Journal of Network and Computer Applications, 2016. 

[24] M. G. Nair, S. Bhuvaneswari, and S. S. Baboo, “A Survey of 
Load Balancing in Cloud Computing: Challenges and 
Algorithms,” Int J Comput Appl, 2015. 

[25] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of 
Statistical Learning: Data Mining, Inference, and Prediction. 
Springer, 2009. 

[26] G. James, D. Witten, T. Hastie, and R. Tibshirani, An 
Introduction to Statistical Learning: with Applications in R. 
Springer, 2013. 

[27] H. T. Jiawei Han Jian Pei, Data Mining: Concepts and 
Techniques, 4th ed. in The Morgan Kaufmann Series in Data 
Management Systems. Morgan Kaufmann, 2022. 

  

 


	Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021
	Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026
	Cloud Node Auto-Scaling System Automation Based on Computing Workload Prediction
	Tri Fidrian Arya1*, Reza Fuad Rachmadi2, Achmad Affandi3
	1,3Department of Electrical Engineering, Faculty of Intelligent Electrical and Information Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
	2Department of Computer Engineering, Faculty of Intelligent Electrical and Information Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
	1trifidrianarya@gmail.com, 2fuad@its.ac.id, 3affandi@its.ac.id
	Abstract
	2. Research Methods
	2.1 System Analysis
	2.2 Data Analysis
	2.3 System Architecture Design
	2.4 Prediction Model System Design
	2.5 Automation System Design
	2.5 Implementation and Testing

	3. Results and Discussions
	3.1 Dataset Characteristics
	3.2 Implementation and Testing of Forecasting Model

	4. Conclusions
	Acknowledgements
	References

