
 Received: 17-07-2024 | Accepted: 01-10-2024 | Published Online: 06-10-2024
597

Accredited SINTA 2 Ranking
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online at: http://jurnal.iaii.or.id

JURNAL RESTI
(Rekayasa Sistem dan Teknologi Informasi)

Vol. 8 No. 5 (2024) 597 - 606 e-ISSN: 2580-0760

Cloud Node Auto-Scaling System Automation Based on Computing
Workload Prediction

Tri Fidrian Arya1*, Reza Fuad Rachmadi2, Achmad Affandi3
1,3Department of Electrical Engineering, Faculty of Intelligent Electrical and Information Technology, Institut Teknologi

Sepuluh Nopember, Surabaya, Indonesia
2Department of Computer Engineering, Faculty of Intelligent Electrical and Information Technology, Institut Teknologi

Sepuluh Nopember, Surabaya, Indonesia
1trifidrianarya@gmail.com, 2fuad@its.ac.id, 3affandi@its.ac.id

Abstract

Auto-scaling systems in cloud computing are important for handling application workload fluctuations. This research uses
machine learning to predict resource requirements based on workload work patterns and design an automatic scaling system.
The dataset used includes features of node name, time, CPU usage percentage, and RAM usage. The ML model is applied for
prediction regression of CPU usage percentage, CPU load, and RAM usage, and then the server workload is classified into
four categories: Very High, High, Low, and Very Low. The autoscaling system used is horizontal scaling. From the results of
this research, it was found that the stacking algorithm with the base learner Random Forest and XGBoost had better
performance in producing predictive regression. Then, after performing stability testing using K-Fold cross-validation by
classifying based on workload status, it was found that the Gradient Boosting algorithm had better results compared to other
algorithms, namely for the percentage of CPU usage with an accuracy of 0.998, precision 0.9, recall 0.878, f1score 0.888;
CPU load average 15 minutes with accuracy 0.997, precision 0.854, recall 0.863, f1score 0.863; Meanwhile, the percentage
of RAM usage is accuracy 0.992, precision 0.986, recall 0.986, and f1score 0.986. However, the XGBoost algorithm also has
test results that are almost the same as Gradient Boosting.

Keywords: Auto-scaling; Cloud Computing; Forecasting; Workload

How to Cite: Tri Fidrian Arya, Reza Fuad Rachmad, and Achmad Affandi, “Cloud Node Auto-Scaling System Automation
Based on Computing Workload Prediction”, J. RESTI (Rekayasa Sist. Teknol. Inf.) , vol. 8, no. 5, pp. 597 - 606, Oct. 2024.
DOI: https://doi.org/10.29207/resti.v8i5.5928

1. Introduction

The increasingly rapid development of the digital
industry and the need for flexible computing
infrastructure means that Cloud Computing services
have become the main choice. Service Cloud, otherwise
known as Infrastructure as a Service (IaaS). To optimize
system performance and avoid wasting resources,
practice auto-scaling has become popular. Auto-scaling
enables infrastructure Cloud to automatically adjust
computing capacity according to workload fluctuations.
In this case adding or reducing resources such as CPU,
RAM, or storage dynamically either by mechanism
vertical scaling or horizontal scaling automatically.

Despite the concept that auto-scaling is well known,
implementation often requires a deep understanding of
workload patterns, as well as careful monitoring.
Therefore, implementation machine learning can be

used to manage auto-scaling for the Infrastructure
Cloud.

Research conducted [1] by Balantimuhe et al conducted
research on cloud node resource management based on
server workload parameters (CPU processor usage).
The server workload is classified into 3 status groups,
namely low, medium and high. In developing the
prediction model, use the Backpropagation Neural
Network (BNN) model, with several data features on
CPU usage, RAM, network traffic and accuracy
performance of more than 90%.

In 2018 [2] there was research to automate predictions
based on actual workload patterns and resources
obtained from historical data on existing service data.
The prediction model used is Naive Bayes. Adane and
Kakde [3] conducted research related to auto scalability
using machine learning methods to predict resource

https://doi.org/10.29207/resti.v8i5.5928

Tri Fidrian Arya, Reza Fuad Rachmadi, Achmad Affandi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 598

usage such as CPU and memory in a cloud system
environment. The algorithm of machine learning which
is used is Random Forest. Algorithm Random Forest
has good performance compared to other algorithms,
such as LinearrRegression, k-NN, Neural Networks,
and SVM. The experimental results produce a learning
model Random Forest that has lower prediction
regression error tolerance and lower resource usage
time compared to other models.

Research by Khaleq, et al in 2021 [4] developed a smart
autonomous automatic scaling system for automatic
scaling microservice of the cloud with QoS constraints,
using the method of Reinforcement Learning (RL).
Provides customized auto-scaling results for
microservice in cloud applications by paying attention
to the minimum QoS constraints perceived by the user.

Furthermore, research conducted in 2022 [5] is
a constructive machine learning (ML) model to make
predictions for computing workload patterns on the
server farm based on data from time to time
from previously appropriate computing activities.
Building models using models SVM. Testing is carried
out to obtain accurate regression predictions, and
comparisons are made with the model and other
machine learning. Other machine learning models used
Gaussian Naive Bayes and obtained better accuracy
prediction results using SVM.

Iqbal W, et al [6] Conducted research on the use of
varying-performance Virtual Machines (VM) to
perform automatic scaling in dealing with dynamic and
fluctuating workloads. Its predictive modelling uses
a Random Decision Forest (RDF) based on resource
configuration, number of requests, and response time.
Comparing algorithms Random Decision Forest (RDF)
with AdaBoost, SVM, Naive Bayes, and K-NN
algorithms. And getting results from RDF has better
performance.

Manam S, et al [7] Conducted research on the automatic
scaling method used, namely the Random Forest
Classifier method, which is a supervised classifier
model that uses a decision tree creation algorithm. Each
tree in the Random Forest Classifier will produce a
prediction, and the best prediction will be selected
based on the number of votes from each tree. This
method can produce better CPU and memory
predictions compared to other algorithms.

Within the framework of this research, the aim is to
develop and test an auto-scaling system prediction
automation algorithm that can intelligently adjust Cloud
resources based on dynamic analysis of computing
workloads by utilizing several algorithms. Machine
Learning (ML) to look for good performance and
processes auto-scaling use horizontal scaling.

2. Research Methods

The stages that will be carried out in the research are as
follows in Figure 1.

Figure 1. Research Block Diagram

2.1 System Analysis

System analysis is carried out to find out problems with
the architecture and implementation of the previous
system as in Figure 2, and to find out what is needed to
overcome these problems.

Figure 2. Existing Architecture

Users access the application there is a firewall (WAF)
before accessing the server. After passing through the
WAF, it is forwarded to the Reverse Proxy (RP). From
the Reverse Proxy (RP) the request is forwarded to the
destination application server VM according to its
domain. The application VM is connected to its
database (DB)

There was a problem with the previous system
architecture, namely that there was no mechanism that
automatically adjusted the resources in the application
VM according to needs. When workload fluctuations
occur in applications on a VM that are accessed with a
high workload, it causes the application process on the
VM to become slow or even inaccessible.

To minimize the impact of workload fluctuations on a
VM, leveraging machine learning in the system
autoscaling is one solution. Machine learning will
analyze historical data to predict server workload.
System auto-scaling The mechanism used is horizontal
scaling, capacity adjustment is carried out by increasing
or decreasing the number of VMs horizontally, without
changing the capacity of each VM itself. [8][9][10].
Election horizontal scaling from vertical scaling is to
minimize downtime during the process auto-scaling is
running, because on vertical scaling Capacity
adjustments are carried out by increasing the resource
capacity of the running VM and requiring a restart of
the VM itself.

2.2 Data Analysis

The detailed dataset used consists of 15 features
according to Table 1 To characterize workloads to form
a system prediction model auto-scaling. The selected
feature is a performance indicator of a node in the data
centre cloud.

Tri Fidrian Arya, Reza Fuad Rachmadi, Achmad Affandi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 599

Table 1. Dataset Features Used

No Feature Name Description
1 Node_name Cloud node name
2 Day_of_week Day of the week (1-7)
3 Time_only Time
4 Day_number Days of the month (1-31)
5 Cpu_load_avg_1_min Average CPU Load per 1

minute
6 Cpu_load_avg_5_mins Average CPU Load per 5

minutes
7 Cpu_load_avg_15_mins Average CPU Load per 15

minutes
8 Cpu_usage_percentage CPU Usage Percentage
9 Ram_used RAM/memory used (MB)
10 Ram_total RAM/memory total (MB)
11 Ram_usage_percentage RAM usage percentage
12 Disk_used Storage used (GB)
13 Disk_total Total storage (GB)
14 Net_packet_send Download bandwidth

(MiB/s)
15 Net_packet_received Upload bandwidth (MiB/s)
16 Label Server workload status

Dataset retrieval mechanism for the system auto-scaling
carried out on 10 virtual machines (VM) according to
Figure 3 with data features according to Table 1 Is
carried out every 15 minutes. The dataset was labelled
using the criteria according to Table 2 [2]. After the data
has been collected and labelled, the workload status is
then sent to the machine learning Forecasting server to
be formed into a dataset for the training process later.

Table 2. Performance Criteria and Percentage of Capacity
Utilization

No Performance Criteria Percentage of Usage Capacity
1. ‘Very Low‘ 0%-25%
2. ‘Low‘ 25%-50%
3. ‘High‘ 50%-75%
4. ‘Very High‘ 75%-100%

Figure 3. The process of collecting data into datasets

2.3 System Architecture Design

Following in Figure 4 Is the system architecture design
autoscaling generally uses a horizontal scaling
mechanism by monitoring the workload on the
application server [11].

Figure 4. Auto-Scaling System Architecture

The difference from the previous architecture is that
there is Machine Learning Forecasting. [12], which is
used to monitor workload Application server VMs, and
perform predictions and triggers to perform resource
scalability, either adding resources (scale-up)
horizontally, namely doing clone VM, or reducing
resources (scale-down) according to the results of the
monitored server workload prediction classification.

2.4 Prediction Model System Design

Designing a prediction model is part of system design
by the previous system architecture design. The
prediction model is formed based on previously
collected datasets, which include features such as
timestamp, CPU-processor percentage, RAM usage,
disk usage, and traffic bandwidth. Here are the steps to
take:

Feature Extraction from Timestamp: Extracted features
traction as in Table 3 Includes days of 1 week and the
date is within 1 month, which allows the model to
understand time-based work patterns.

Table 3. Prediction Model Building Feature Data

No Feature Name Description
1 Node_name Cloud node name
2 Day_of_week Day of the week (1-7)
3 Time_only Time (hh:mm: ss)
4 Day_number Days of the month (1-31)
5 Ram_total RAM/memory total (MB)
6 Disk_total Total storage (GB)

Unchanging Features: Some features such as total
RAM, total storage, and node names do not change over
time and are considered fixed features as in Table 3.

Predicted Features: The features whose values will be
predicted are CPU workload estimates, CPU usage,
memory usage, and bandwidth usage. According to
Table 4.

Table 4. Prediction Model Target Class Data

No Target Description
1 Cpu_load_avg_15_mins Average CPU Load per

15 minutes
2 Cpu_usage_percentage CPU Usage Percentage
3 Ram_usage_percentage RAM usage percentage

Prediction Model Building: The prediction model used
by several algorithms [12] based on the results of
previous research produces good performance among
the algorithms ensemble learning [13][14][15] among
others Random Forest [16], Gradient Boosting [17],
XGBoost [18], as well as the algorithm Neural
Network[19][20] i.e ‘Multi-LayerrPerceptron’(MLP)
[20] and Long-Short-Term-Memory (LSTM) [21]. The
model is trained to learn patterns from the extracted
features and predict unknown values based on these
features. Figure 5 shows the general stages of machine
learning, in which datasets are grouped into 2 subsets of
data, namely the training subset and the testing subset,
from the training data is carried out to form an ML
model using the algorithm mentioned previously. Then

Tri Fidrian Arya, Reza Fuad Rachmadi, Achmad Affandi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 600

make predictions using the testing data that has been
prepared.

Figure 5. General Stages of Machine Learning (ML)

Classification of results from prediction regression:
after getting the performance results from the best
model, the results of the predictive regression are then
classified according to the criteria in Table 2 and Figure
6. If the regression prediction results are less than 25%
they will be categorized as very low, less than 50% be
low, less than 75% be high, and above it becomes very
high.

Figure 6. Prediction result classification criteria

2.5 Automation System Design

The mechanism for sending workload data is carried out
according to Figure 7 Process of monitoring workload
data from Virtual Machine (VM). The VM being
monitored will send its workload status data according
to the parameters in Table 3 and Table 4 To the ML
Forecasting server. This process is carried out every 15
minutes.

Figure 7. The process of monitoring workload data from VM

Then ML System Forecasting analyzes this data and
predicts workload status for some time in the future. ML
mechanism Forecasting as in Figure 8 Process
forecasting data workload From the VM being
monitored, the ML Forecasting server performs
workload predictions, after generating the workload
prediction status then triggers the Jenkins server to carry
out scale-up or scale-down.

Jenkins does auto-scaling with a horizontal-scaling
mechanism, which clones the monitored server up to a
certain number. On Jenkins, there are 2 jobs doing
scale-up and scale-down and configuring Load
Balancing.[22], [23], [24] according to Figure 9 To the
resulting VM auto-scaling.

Figure 8. Workload data forecasting process of monitored VM

Figure 9. Reverse Proxy Server and Load Balancing

2.5 Implementation and Testing

At this stage, implementation is carried out based on
architectural design and infrastructure design cloud to
be built, the automation system auto-scaling, and
forecasting machine learning will be combined, then
system testing of the system will be carried out auto-
scalinghis.

Testing is carried out to test the prediction results using
MSE, MAE, and Correlation Coefficient. [25] [26].
Testing the classification results uses the method of k-
fold cross-validation which uses a confusion matrix to
get the value of accuracy, precision, recall, and f1 score.
[27].

3. Results and Discussions

3.1 Dataset Characteristics

Figure 10. Correlation Heatmap Between Dataset Features

The dataset used from March to the end of May 2024
amounts to 78044 data originating from 10 cloud nodes.
Based on the dataset that has been collected, the
correlation between the features is obtained as follows

Tri Fidrian Arya, Reza Fuad Rachmadi, Achmad Affandi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 601

in Figure 10. It is found that CPU Usage and CPU Load
are certainly highly correlated, and s based on
correlation value.

After measuring the workload correlation between
servers to determine the connectiv, isity between
servers according to the dataset, the correlation matrix
results were obtained for CPU usage, average CPU load
in 15 minutes, and RAM usage as follows in Figure 11,
Figure 12, Figure 13. From the results of Figure 11, it is
obtained that the correlation between servers from the
percentage of CPU usage still has a relationship that can
be said to be high, especially in VM 0 and 1; VM 0 and
6; VM 1 and 6; and VM 3 and 5.

Figure 11. Correlation Heat CPU Usage Between Nodes

From Figure 12, the CPU load load shows that the
server has a weak correlation. Meanwhile, in Figure 13,
the percentage of RAM usage shows various strong and
weak correlations, which correlate or can be said to
have a connection, namely VM 0 and 6; VM 0 and 8;
VM 3 and 8; VM 6 and 8; as well as VM 8 and 9. From
the results of determining the correlation, it can be
concluded that in general the workload between one
server and another server is connected or influences

each other, so that in making a prediction model you can
utilise the dataset from each cloud node, to predict
the workload of another server.

Figure 12. Correlation Heat CPU Load 15 Minutes Between Nodes

Figure 13. Correlation Heat RAM Usage Between Nodes

Table 5. Specifications of The Tools Used

Server Tools Proxmox Cluster Jenkins NGINX Forecasting Server App Server
OS Debian 11 Debian 11 CentOS 7 Ubuntu 22 CentOS 7
CPU 68 * 2.10 GHz 4 * 2.10 GHz 4 * 2.10 GHz 6 * 2.10 GHz 4 * 2.10 GHz
RAM 85 GB 4 GB 8 GB 4 GB 4 GB
Disk 8 TB 500GB 500 GB 100 GB 100 GB

The implementation of the system design required for
hardware and software is as follows in Table 5. The
following are the results of the implementation of
Jenkins to carry out VM scale-up and scale-down jobs,
wherein each job there is a stage or stages carried out
by Jenkins in handling VM auto-scaling according to
Table 6. From the results of implementing Jenkins, it
takes approximately 6-8 minutes to carry out the
process scale-up and takes around 1-2 minutes to carry
out the process scale-down.

Table 6. State Scaling Processes And Time

No State
Scaling

Takes
Time

Stages

1 Scale-
Up

6min
15s

Clone VM; Configure Reverse Proxy;
Reload Reverse Proxy

2 Scale-
Down

1min
53s

Configure Reverse Proxy; Reload
Reverse Proxy; Remove Clone VM

Tri Fidrian Arya, Reza Fuad Rachmadi, Achmad Affandi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 602

3.2 Implementation and Testing of Forecasting Model

Before performing the forecasting process: based on
the status workload from the VM being monitored
according to the process in Figure 8. Then the dataset
that was previously obtained was divided into 2 data
subsets, namely 70% ‘training-subset, and 30% testing-
subset. The following are the results of the distribution
plot of the percentage of CPU usage in Figure 14, CPU
Load in Figure 15 RAM usage is shown in Figure 16 for
each node cloud.

Figure 14. Time-series graph of CPU usage percentage

Figure 15. Time-series graph of CPU Load percentage Average 15

minutes

Figure 16. Time-series graph of RAM usage percentage

The results of the distribution of CPU usage from
Figure 14 show an unbalanced distribution of workload
status data, where the distribution data is in the same
data status workload Very Low and Low (usage less
than 50%) is very large compared to High or Very High
status (more than 50% usage) of each node. From the
results of the data distribution in Figure 15, it is found
that the CPU load of 15 minutes is very low (less than
0.25 or 25%) and greater than the other workload

statuses, resulting in an unbalanced data distribution
from each status for each node.

From the results of the distribution of time-series data
for RAM percentage usage in Figure 16, we get a
distribution that can be said to be even between each
workload status, namely Very Low, Low, High, and
Very High.

Testing is needed in the selection of machine learning
algorithms: which have good performance. Algorithm
comparison machine learning used is the model
ensemble learning that is Random Forest Regressor
(Bagging), Gradient Boosting (Boosting), Extreme
Gradient Boosting (XGBoost), and Stacking which
combines between Random Forest and XGBoost
(Bagging then Boosting). Apart from algorithms
ensemble learning is Also used as the algorithm of the
algorithm Neural Networks, MLP and LSTM. Before
testing the results of the algorithm, first, create a model
that uses 70% of the data from the dataset resource
cloud node which is used as training data. Then, after
the model is formed, the prediction regression results
are tested using 30% of the data from the remaining
dataset as testing data.

The following is a graphic comparison of the plot
between the predicted values produced by each
algorithm and the actual values. Test data samples are
taken based on testing data (30% of the previous dataset
as testing data) and then some data is taken from each
data quartile (Q1, Q2, Q3, Q4).

Figure 17. Comparison chart of predicted and actual CPU usage

Figure 17 shows the regression results of CPU usage
predictions compared to the actual values for each
algorithm. From Figure 17, which is the result of the
CPU usage test data samples used, totalling 34 test data
samples, you can see at a glance that the results have
good predictions, namely XGBoost (purple) because
the prediction results are almost close to the actual
value. At first glance, MLP seems to have poor results
compared to other algorithms.

Figure 18 shows the regression results of CPU Load
predictions per 15 minutes compared to the actual
values for each algorithm. From Figure 18, the results
of the CPU Load test data samples averaged 15 minutes,
totalling 27 sample data that have good performance,
namely Gradient Boosting (blue).

Tri Fidrian Arya, Reza Fuad Rachmadi, Achmad Affandi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 603

Figure 18. Comparison chart of predicted and actual CPU load

average of 15 minutes

Figure 19. Comparison chart of predicted and actual RAM usage

From Figure 19, which is the result of testing samples
of RAM usage totalling 39 samples, which has good
performance at a glance, namely XGBoost (pink

colour) because the prediction results are almost close
to the actual value.

Performance testing results of prediction regression
using the above algorithm: The following are the results
of performance testing from predictive regression using
the algorithm to produce CPU usage predictions in
Table 7. From the results of testing the CPU usage
regression prediction performance in it is found that the
Stacking model (RF and XGBoost) has better
regression prediction performance. It can be seen that
the lowest MSE results are 0.00083 in Stacking (RF and
XGB), the lowest RMSE is 0.02882 in Stacking (RF
and XGB), the lowest RAE is 0.00002 in Stacking (RF
and XGB), and the highest coefficient of determination
is 0.59887.

In the performance testing results from the regression of
CPU load predictions for an average of 15 minutes in
Table 8 Using several algorithms and machine learning.
From the results of the CPU load regression prediction
performance test for an average of 15 minutes, it was
found that the lowest MSE was Stacking (RF and
XGB), namely 0.00064, the lowest RMSE was 0.02536
Stacking (RF and XGB), the lowest RRSE is 0.43756
Stacking (RF and XGB), and the highest coefficient of
determination is Stacking (RF and XGB). So it can be
concluded that the best prediction is the Stacking
algorithm (Random Forest and Extreme Gradient
Boosting). However, if you look at the previous
comparison graph, the Random Forest algorithm has
almost similar performance to Stacking (RF and XGB)
and has a difference that can be said to be small.

Table 7. CPU Usage Prediction Performance Evaluation Results

Algorithm MSE RMSE MAE RSE RRSE RAE R2
GB 1.35x10-3 0.037 7.65x10-3 0.65 0.81 2.61x10-5 0.35
LSTM 1.07x10-3 0.033 8.85x10-3 0.52 0.72 3.01x10-5 0.48
MLP 1.30x10-3 0.036 9.89x10-3 0.63 0.79 3.37x10-5 0.37
RF 9.21x10-4 0.03 6.99x10-3 0.44 0.67 2.38x10-5 0.56
Stacking (RF_XGB) 8.30x10-4 0.029 7.06x10-3 0.4 0.63 2.40x10-5 0.6
XGBoost 1.18x10-3 0.034 7.52x10-3 0.57 0.76 2.56x10-5 0.43

Table 8. CPU Load Average 15 Minutes Prediction Performance Evaluation Results

Algorithm MSE RMSE MAE RSE RRSE RAE R2
GB 9.14x10-4 0.0302 5.79x10-3 0.272 0.522 1.44x10-5 0.728
MLP 1.14x10-3 0.0337 7.67x10-3 0.338 0.581 1.91x10-5 0.662
LSTM 1.02x10-3 0.0319 7.86x10-3 0.304 0.551 1.95x10-5 0.696
RF 6.52x10-4 0.0255 5.67x10-3 0.194 0.441 1.41x10-5 0.806
Stacking (RF_XGB) 6.43x10-4 0.0254 5.94x10-3 0.191 0.438 1.48x10-5 0.809
XGBoost 9.04x10-4 0.0301 5.93x10-3 0.269 0.519 1.48x10-5 0.731

Table 9. RAM Usage Prediction Performance Evaluation Results

Algorithm MSE RMSE MAE RSE RRSE RAE R2
GB 2.12x10-3 0.046 0.008 2.65x10-2 0.163 1.49x 10-6 0.973
LSTM 2.00x10-3 0.045 0.015 2.50x10-2 0.158 2.75x 10-6 0.975
RF 1.44x10-3 0.038 0.008 1.81x10-2 0.134 1.45x 10-6 0.982
MLP 3.28x10-3 0.057 0.026 4.11x10-2 0.203 4.67x 10-6 0.959
Stacking (RF_XGB) 1.44x10-3 0.038 0.009 1.81x10-2 0.134 1.53x 10-6 0.982
XGBoost 1.96x10-3 0.044 0.009 2.46x10-2 0.157 1.62x 10-6 0.975

The performance test results from the RAM usage
prediction regression in Table 9 use several algorithms
and machine learning. From the results of testing the

regression prediction performance of RAM usage in
Table IX, the lowest MSE is 0.00144, namely Stacking
(RF and XGB), the lowest RMSE is 0.03799 Stacking

Tri Fidrian Arya, Reza Fuad Rachmadi, Achmad Affandi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 604

(RF and XGB), the lowest RRSE is 0.13436 in Stacking
(RF and XGB), the highest coefficient of determination
is 0.98195 in Stacking (RF and XGB).

Classification of the results of prediction regression:
After regressing the predicted values from CPU usage,
CPU Load, and RAM usage, the values were then
classified into workload status according to Figure 6.
The confusion metrics were obtained based on the
classification test.

Table 10 are the results of testing the CPU usage
classification of each algorithm. An algorithm that has
good performance is obtained, namely Random Forest
with an accuracy value of 0.9958, precision of 0.7276,
recall of 0.539 and f1 score of 0.5875.

Table 10. CPU Usage Classification Performance

Algorithm Accuracy Precision Recall F1-Scoree
GB 0.9949 0.6670 0.6085 0.6325
LSTM 0.9953 0.6685 0.4754 0.5195
RF 0.9958 0.7276 0.5390 0.5875
Stacking
(RF_XGB)

0.9956 0.4988 0.4672 0.4679
XGBoost 0.9947 0.6536 0.5744 0.5922
MLP 0.9943 0.4782 0.3013 0.3302

Table 11 are the results of the average CPU Load
classification test per 15 minutes for each algorithm. It
was found that Random Forest had better performance,
with an accuracy value of (0.9920), precision (0.6586),
recall (0.5820), and ff1-score (0.6098).

Table 11. CPU Load Average 15 Minutes Classification
Performance

Algorithm Accuracy Precision Recall F1-Scoree
GB 0.9915 0.5810 0.6096 0.5946
RF 0.9920 0.6586 0.5820 0.6098
Stacking
(RF_XGB)

0.9919 0.6555 0.5878 0.6104
XGBoost 0.9906 0.5806 0.5760 0.5776
LSTM 0.9906 0.6308 0.5475 0.5821
MLP 0.9907 0.6132 0.4352 0.4946

Table 12 Are the results of RAM usage classification
testing for each algorithm. It was found that Random
Forest had high precision (0.9607) and f1-score
(0.9550) and Gradient Boosting had high accuracy
(0.9732) and recall (0.9533).

Table 12. RAM Usage Percentage Classification Performance

Algorithm Accuracy Precision Recall F1-Scoree
GB 0.9732 0.9549 0.9533 0.9541
RF 0.9728 0.9607 0.9497 0.9550
Stacking
(RF_XGB)

0.9715 0.9554 0.9481 0.9516

XGBoost 0.9707 0.9548 0.9474 0.9510
LSTM 0.9449 0.9072 0.8884 0.8970
MLP 0.9152 0.8641 0.8096 0.8272

To test the stability of the classification performance
results, the k-fold validation test is used by dividing the
dataset into several subsets called folds. This test is
carried out to test the consistency of machine learning
algorithm model results which is formed. The dataset is
separated into 5 fold subsets, then classification testing
is carried out.

Figure 20. K-Fold results of the classification test of CPU usage

Table 13. Average Performance Results of CPU Usage
Classification Using K-Fold Validation

Algorithm Accuracy Precision Recall F1-Scoree
GB 0.9985 0.9000 0.8780 0.8882
LSTM 0.9957 0.6869 0.5077 0.5481
MLP 0.9943 0.4989 0.3041 0.3359
RF 0.9973 0.8285 0.6550 0.7098
Stacking
(RF_XGB)

0.9965 0.8029 0.5402 0.5740

XGBoost 0.9984 0.8970 0.8595 0.8747

Figure 20 is a graphic plot of accuracy, precision, recall
and f1score from the k-fold cross-validation test for the
percentage of CPU usage carried out in 5-fold
validation. From the results in the graphic image, it was
found that those with better test results were the
Gradient Boosting and XGBoost algorithms.

From the graph in Figure 20, the average accuracy,
precision, recall and f1score of each validation fold
were then calculated. The results obtained as follows: in
Table 13 are the average test results. k-fold cross-
validation for CPU usage. An algorithm with better and
more stable performance was obtained, namely
Gradient Boosting (GB), with an accuracy value of
(0.998), precision (0.9), recall (0.878), and f1-score
(0.888). However, the Extreme Gradient Boosting
(XGBoost) algorithm has almost similar performance to
Gradient Boosting (GB).

Figure 21 shows a plot graph of accuracy, precision,
recall and f1score from the k-fold cross-validation test
for CPU Load on average for 15 minutes carried out in
5-fold validation. From the results in the graphic image,
it was found that the test results were better, namely the
Gradient Boosting algorithm, but XGBoost also had
almost similar test results.

From the graph plot in Figure 21, the results of k-fold
validation are then displayed perform an average
calculation for accuracy of several of the models used,
precision, recall, and f1score are contained in Table 14
are the results of k-fold validation testing for a CPU
Load of 15 minutes. An algorithm with better and more
stable performance was obtained, namely Gradient
Boosting (GB), with an accuracy value of (0.997),

Tri Fidrian Arya, Reza Fuad Rachmadi, Achmad Affandi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 605

precision (0.854), recall (0.873), and f1-score (0.863).
However, the Extreme Gradient Boosting (XGBoost)
algorithm has almost similar performance to Gradient
Boosting (GB).

Figure 21. K-Fold results of the classification test of CPU load

average 15 minutes

Table 14. Average Performance Results of Cpu Load Average 15
minutes Classification Using K-Fold Validation

Algorithm Accuracy Precision Recall F1-Scoree
GB 0.9985 0.9000 0.8780 0.8882
LSTM 0.9957 0.6869 0.5077 0.5481
MLP 0.9943 0.4989 0.3041 0.3359
RF 0.9973 0.8285 0.6550 0.7098
Stacking
(RF_XGB)

0.9965 0.8029 0.5402 0.5740

XGBoost 0.9984 0.8970 0.8595 0.8747

Figure 22. K-Fold results of the classification test of RAM usage

percentage

Figure 22 shows a plot graph of accuracy, precision,
recall and f1score from the k-fold cross-validation test
for the percentage of RAM usage carried out in 5-fold
validation. From the results in the graphic image, it was
found that those with better test results were the
Gradient Boosting and XGBoost algorithms.

Then, from the graph in Figure 22, the average
calculation of the ‘5-fold_validationn results for
evaluation-metrics as in Table 15 is the test result. k-

fold cross-validation for RAM usage. An algorithm
with better and more stable performance was obtained,
namely Gradient Boosting (GB), with an accuracy
value of (0.992), precision (0.986), recall (0.986), and
f1-scoree(0.986). However, the Extreme Gradient
Boosting (XGBoost) algorithm has almost similar
performance to Gradient Boosting (GB).
Table 15. Average Performance Results of RAM Usage Percentage

Classification Using K-Fold Validation

Algorithm Accuracy Precision Recall F1-Scoree
GB 0.9918 0.9859 0.9857 0.9858
MLP 0.9164 0.8622 0.8153 0.8310
RF 0.9850 0.9782 0.9722 0.9751
XGBoost 0.9910 0.9860 0.9838 0.9848
LSTM 0.9482 0.9109 0.8927 0.9011
Stacking
(RF_XGB)

0.9824 0.9712 0.9678 0.9695

4. Conclusions

From the results of the implementation and analysis in
this research, it was found that the Stacking algorithm
uses a base learner, namely Randon Forest However,
when classifying cloud computing workload status,
there are 4 statuses, namely: Very High, High, Low, and
Very Low It was found that the Random Forest
algorithm produced relatively better accuracy,
precision, recall and f1-score values. Then, after
carrying out stability testing using K-Fold Cross
Validation for classification based on workload status,
it was found that the Gradient Boosting algorithm had
relatively better results among other algorithms, namely
for the percentage of CPU usage with an accuracy of
0.998, precision 0.9, recall 0.878, f1score 0.888; CPU
Load average 15 minutes with accuracy 0.997,
precision 0.854, recall 0.863, f1score 0.863;
Meanwhile, the percentage of RAM usage is accuracy
0.992, precision 0.986, recall 0.986, and f1score 0.986.
However, the XGBoost algorithm also has test results
that are almost close to the results of Gradient Boosting.

In the future, it is hoped that this paper can be developed
by implementing a deep learning model in depth to train
the model, with the hope that the deep learning model
used will produce even better tests.

Acknowledgements

Support and funding for the publication of this paper
were provided by the Indonesian Ministry of
Communications and Information Republic Indonesia
(KOMINFO RI) and for that we thank you.

References
[1] A. S. Balantimuhe, S. H. Pramono, and H. Suyono,

“Konsolidasi Beban Kerja Kluster Web Server Dinamis dengan
Pendekatan Backpropagation Neural Network,” Jurnal EECCIS
(Electrics, Electronics, Communications, Controls, Informatics,
Systems), vol. 12, no. 2, pp. 72–77, Sep. 2018, doi:
10.21776/jeeccis.v12i2.536.

[2] A. M. Al-Faifi, B. Song, M. M. Hassan, A. Alamri, and A.
Gumaei, “Performance prediction model for cloud service
selection from smart data,” Future Generation Computer

Tri Fidrian Arya, Reza Fuad Rachmadi, Achmad Affandi
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 606

Systems, vol. 85, pp. 97–106, Aug. 2018, doi:
10.1016/j.future.2018.03.015.

[3] P. D. Adane and O. G. Kakde, “Predicting Resource Utilization
for Cloud Workloads Using Machine Learning Techniques,” in
Proceedings of the 2nd International Conference on Inventive
Communication and Computational Technologies (ICICCT),
2018, pp. 1372–1376.

[4] A. A. Khaleq and I. Ra, “Intelligent Autoscaling of
Microservices in the Cloud for Real-Time Applications,” IEEE
Access, vol. 9, pp. 35464–35476, 2021, doi:
10.1109/ACCESS.2021.3061890.

[5] S. T. Singh, M. Tiwari, and A. S. Dhar, “Machine Learning
based Workload Prediction for Auto-scaling Cloud
Applications,” in 2022 OPJU International Technology
Conference on Emerging Technologies for Sustainable
Development, OTCON 2022, Institute of Electrical and
Electronics Engineers Inc., 2023. doi:
10.1109/OTCON56053.2023.10114033.

[6] W. Iqbal, A. Erradi, M. Abdullah, and A. Mahmood, “Predictive
Auto-Scaling of Multi-Tier Applications Using Performance
Varying Cloud Resources,” IEEE Transactions on Cloud
Computing, vol. 10, no. 1, pp. 595–607, 2022, doi:
10.1109/TCC.2019.2944364.

[7] S. Manam, K. Moessner, and P. Asuquo, “A Machine Learning
Approach to Resource Management in Cloud Computing
Environments,” in IEEE AFRICON Conference, Institute of
Electrical and Electronics Engineers Inc., 2023. doi:
10.1109/AFRICON55910.2023.10293275.

[8] R. A.) Eric Bauer, Reliability and Availability of Cloud
Computing. Wiley-IEEE Press, 2012.

[9] V. Millnert and J. Eker, “HoloScale: horizontal and vertical
scaling of cloud resources,” in 2020 IEEE/ACM 13th
International Conference on Utility and Cloud Computing
(UCC), 2020, pp. 196–205. doi:
10.1109/UCC48980.2020.00038.

[10] C.-Y. Liu, M.-R. Shie, Lee Yi-Fang, and K.-C. Lai, ICISA
2014 : 2014 Fifth International Conference on Information
Science and Applications : 6-9 May, 2014, Seoul, Korea. 2014.

[11] J. Bi et al., “Application-Aware Dynamic Fine-Grained
Resource Provisioning in a Virtualized Cloud Data Center,”
IEEE Transactions on Automation Science and Engineering,
vol. 14, no. 2, pp. 1172–1184, 2017, doi:
10.1109/TASE.2015.2503325.

[12] V. P. M. Arif Wani, Deep Learning Applications, Volume 4. in
Advances in Intelligent Systems and Computing, 1434.
Springer, 2023.

[13] T. G. Dietterich, “Ensemble Methods in Machine Learning,” in
Multiple Classifier Systems, Berlin, Heidelberg: Springer Berlin
Heidelberg, 2000, pp. 1–15.

[14] I. D. Mienye and Y. Sun, “A Survey of Ensemble Learning:
Concepts, Algorithms, Applications, and Prospects,” IEEE
Access, vol. 10, pp. 99129–99149, 2022, doi:
10.1109/ACCESS.2022.3207287.

[15] C. Zhao, R. Peng, and D. Wu, “Bagging and Boosting Fine-
Tuning for Ensemble Learning,” IEEE Transactions on
Artificial Intelligence, vol. 5, no. 4, pp. 1728–1742, 2024, doi:
10.1109/TAI.2023.3296685.

[16] L. Breiman, “Random Forests,” Mach Learn, vol. 45, no. 1, pp.
5–32, Oct. 2001, doi: 10.1023/A:1010933404324.

[17] J. H. Friedman, “Greedy function approximation: A gradient
boosting machine.,” The Annals of Statistics, vol. 29, no. 5, pp.
1189 – 1232, 2001, doi: 10.1214/aos/1013203451.

[18] T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting
System,” in Proceedings of the 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining, in KDD ’16. New York, NY, USA: Association for
Computing Machinery, 2016, pp. 785–794. doi:
10.1145/2939672.2939785.

[19] D. H. Wolpert, “Stacked generalization,” Neural Networks, vol.
5, no. 2, pp. 241–259, 1992, doi: https://doi.org/10.1016/S0893-
6080(05)80023-1.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning.
MIT Press, 2016.

[21] S. Hochreiter and J. Schmidhuber, “Long Short-Term
Memory,” Neural Comput, vol. 9, no. 8, pp. 1735–1780, Jul.
1997, doi: 10.1162/neco.1997.9.8.1735.

[22] S. Sharma, R. Garg, and D. K. Lobiyal, “Load Balancing
Algorithms in Cloud Computing: A Comparative Study,”
International Journal of Advanced Research in Computer
Science and Software Engineering, 2014.

[23] S. Muthukrishnan and V. Sankaranarayanan, “A Survey of Load
Balancing Techniques in Cloud Computing Environments,”
Journal of Network and Computer Applications, 2016.

[24] M. G. Nair, S. Bhuvaneswari, and S. S. Baboo, “A Survey of
Load Balancing in Cloud Computing: Challenges and
Algorithms,” Int J Comput Appl, 2015.

[25] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning: Data Mining, Inference, and Prediction.
Springer, 2009.

[26] G. James, D. Witten, T. Hastie, and R. Tibshirani, An
Introduction to Statistical Learning: with Applications in R.
Springer, 2013.

[27] H. T. Jiawei Han Jian Pei, Data Mining: Concepts and
Techniques, 4th ed. in The Morgan Kaufmann Series in Data
Management Systems. Morgan Kaufmann, 2022.

	Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021
	Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026
	Cloud Node Auto-Scaling System Automation Based on Computing Workload Prediction
	Tri Fidrian Arya1*, Reza Fuad Rachmadi2, Achmad Affandi3
	1,3Department of Electrical Engineering, Faculty of Intelligent Electrical and Information Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
	2Department of Computer Engineering, Faculty of Intelligent Electrical and Information Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia
	1trifidrianarya@gmail.com, 2fuad@its.ac.id, 3affandi@its.ac.id
	Abstract
	2. Research Methods
	2.1 System Analysis
	2.2 Data Analysis
	2.3 System Architecture Design
	2.4 Prediction Model System Design
	2.5 Automation System Design
	2.5 Implementation and Testing

	3. Results and Discussions
	3.1 Dataset Characteristics
	3.2 Implementation and Testing of Forecasting Model

	4. Conclusions
	Acknowledgements
	References

