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Abstract  

The increasing use of credit cards in global financial transactions offers significant convenience for consumers and businesses. 

However, credit card fraud remains a major challenge due to its potential to cause substantial financial losses. Detecting credit 

card fraud is a top priority, but the primary challenge lies in class imbalance, where fraudulent transactions are significantly 

fewer than non-fraudulent ones. This imbalance often leads to machine learning algorithms overlooking fraudulent 

transactions, resulting in suboptimal performance. This study aims to enhance the performance of Multilayer Perceptron 

(MLP) in addressing class imbalance by employing cost-sensitive learning strategies. The research utilizes a credit card 

transaction dataset obtained from Kaggle, with additional validation using an e-commerce transaction dataset to strengthen 

the robustness of the findings. The dataset undergoes preprocessing with RUS and SMOTE techniques to balance the data 

before comparing the performance of baseline MLP models to those optimized with cost-sensitive learning. Evaluation metrics 

such as accuracy, recall, F1 score, and AUC indicate that the optimized MLP model significantly outperforms the baseline, 

achieving an AUC of 0.99 and a recall of 0.6. The model's superior performance is further validated through statistical tests, 

including Friedman and T-tests. These results underscore the practical implications of implementing cost-sensitive learning in 

MLPs, highlighting its potential to significantly enhance fraud detection accuracy and offer substantial benefits to financial 

institutions. 
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1. Introduction  

The increased use of credit cards in global financial 

transactions has provided significant convenience for 

consumers and businesses[1]. However, this 

development also presents a major challenge in the form 

of credit card fraud[2]. Such fraud can cause substantial 

financial losses for financial institutions and consumers, 

making credit card fraud detection (CCFD) a top 

priority to minimize these losses[3]. 

Class imbalance in classification data is a significant 

challenge in CCFD[4]. In the context of CCFD, 

fraudulent transactions are considerably fewer 

compared to non-fraudulent ones[5]. This imbalance 

often leads to machine learning models ignoring 

fraudulent transactions due to the dominance of non-

fraudulent transactions in the training data[6]. 

Consequently, the resulting models perform poorly in 

detecting rare but critical fraud transactions[7]. 

Various techniques have been employed to mitigate 

class imbalance in credit card fraud detection (CCFD). 

Resampling techniques, such as SMOTE and Random 

Under Sampling (RUS), have been widely adopted to 

balance the data distribution[7]. SMOTE generates 

synthetic samples for the minority class to enhance its 

representation, though it may lead to overfitting in 

certain scenarios[5]. Additionally, ensemble methods 

like Random Forest, XGBoost, AdaBoost, and Easy 

Ensemble have also been proposed as effective 

strategies to improve classification performance. These 

methods work by combining multiple models to better 

detect minority classes, but they come with increased 

computational complexity and the need for extensive 

hyperparameter tuning, which can be challenging and 
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may impact the model's overall effectiveness if not 

properly managed[8]. Recent studies [9] have also 

explored hybrid techniques, such as combining SMOTE 

with Generative Adversarial Networks (GANs), to 

further enhance the effectiveness of resampling 

strategies. Hybrid SMOTE-GAN techniques have 

shown promising results in addressing class imbalance 

by generating more realistic fraud samples while 

reducing the risks associated with overfitting. However, 

these techniques still face challenges such as the 

complexity of training GAN models and the potential 

for introducing noise through SMOTE, which can 

reduce the overall effectiveness of the approach. 

One approach involves the use of cost-sensitive 

learning (CSL), which introduces different penalties or 

costs for misclassification errors depending on the 

importance of the class[10]. Studies have shown that 

CSL improves performance in handling class imbalance 

in various domains, including medical data[11]. 

Additionally, CSL can manage high-dimensional data 

and address class imbalance by adaptively adjusting the 

loss function, thus bridging the distribution between 

classes[10]. 

Multilayer Perceptron (MLP) is a type of neural 

network commonly used in various classification tasks, 

including fraud detection[12]. Although MLP can 

model non-linear relationships in data, it has several 

weaknesses in handling class imbalance issues[13]. 

These weaknesses include overfitting to the majority 

class, underfitting to the minority class, and the need for 

complex hyperparameter tuning to achieve optimal 

performance[14].To address these issues, this research 

aims to optimize MLP to handle class imbalance by 

utilizing CSL techniques and advanced weighting 

methods. 

Compared to these approaches, the proposed method 

leverages the non-linear modeling capabilities of MLP 

and enhances it with CSL. CSL specifically adjusts the 

loss function by assigning higher penalties to 

misclassification errors in the minority class, thereby 

improving the model’s sensitivity to fraudulent 

transactions without the risk of overfitting. This 

integration offers a more balanced and accurate 

detection mechanism for credit card fraud in highly 

imbalanced datasets. 

The novelty of this research lies in developing a more 

effective method for optimizing MLP to address class 

imbalance and offering a better solution compared to 

previous approaches. This study presents a novel 

approach that integrates CSL with MLP, providing a 

comprehensive analysis of its performance. The main 

contributions of this research include the development 

of a novel method for optimizing MLP to handle class 

imbalance and providing a comprehensive analysis of 

the performance of MLP optimized with CSL 

techniques. This study also offers practical guidelines 

for financial practitioners in implementing more 

accurate fraud detection models and significantly 

improving the accuracy of CCFD. 

2. Research Methods 

This research addresses class imbalance in credit card 

transaction data by optimizing MLP through weight 

adjustments using Cost-Sensitive Learning (CSL). 

This research uses a credit card transaction dataset from 

Kaggle in September 2013[15].  The dataset contains 31 

variables, with the target classes being fraud, 

comprising 492 records, and non-fraud, comprising 

284,315 records. This imbalance leads to a significant 

challenge in training effective models for fraud 

detection. Figure 1 shows the distribution between the 

fraud and non-fraud classes. 

 

Figure 1. Visualization Data   

In addition to using the credit card fraud dataset, this 

research employs another dataset to test the reliability 

of the proposed MLP model optimized with cost-

sensitive learning weighting. This additional dataset 

includes e-commerce transactions containing fraud and 

credit card transaction data from January to April 

2022[16]. Table 1 provides information on the credit 

card dataset from September 2013 and the e-commerce 

fraud transactions dataset. 

Table 1. Dataset Information  

Dataset Sample Fraud Ratio  

Credit Card 1 284807 492 0.0017 

E-Commerce 23634 1222 0.0545 

Credit Card 2 1048575 140473 0.1547 

The preprocessing stage ensures that the data is clean 

and ready for modelling. The preprocessing steps begin 

with removing records with missing values. In this 

research, out of a total of 284,807 records, no records 

were found to be missing after detecting missing data. 

The next step is to separate the features and labels, 

consisting of 28 features and 1 class label. The target 

label 0 represents non-fraud, and the value 1 represents 

fraud. The final step is data normalization to ensure that 

the feature types support MLP modelling. Data 

normalization is performed using Z-score 

standardization, as shown in Equation 1[11]. 

𝑋𝑠𝑡𝑑 =
𝑋−𝜇

𝜎
               (1) 
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Random Under Sampling (RUS) is a simple technique 

used to address class imbalance in datasets by reducing 

the size of the majority class[17]. This method 

randomly selects a subset of data from the majority 

class to reduce its number, making it equivalent to the 

minority class. RUS helps balance class distribution and 

can potentially improve the performance of machine 

learning models by focusing more on the minority 

class[18].  

Synthetic Minority Over-sampling Technique 

(SMOTE) is a sophisticated method used to handle 

class imbalance in machine-learning datasets[19]. 

Instead of simply copying existing samples, SMOTE 

generates new synthetic samples for the minority class 

by interpolating between current minority samples [20]. 

This approach boosts the representation of the minority 

class, making machine learning models better at 

identifying patterns specific to that class. 

A Multilayer Perceptron (MLP) is a type of artificial 

neural network that consists of at least three layers of 

nodes: the input layer, one or more hidden layers, and 

the output layer. This layered configuration allows the 

MLP to perform information processing tasks with 

higher complexity, as each additional layer can capture 

more features and patterns in the processed data[21]. 

This process ensures that the input data is sequentially 

processed through each layer until it reaches the final 

output layer. With these characteristics, the MLP can be 

applied in various fields, including pattern recognition, 

classification, and prediction[22]. The stages of MLP 

are [23]: Initialization of Weights (w) and Biases (b): 

Randomly initialize weights and biases using Equation 

1; Forward Propagation: Input data is forwarded to the 

hidden layer and output using Equations 2 and 3; Loss 

Function Calculation: Use binary cross-entropy for 

binary classification using Equation 4; 

Backpropagation: Calculate the gradient of the loss 

function concerning weights and biases using Equations 

5 and 6; Weight and Bias Update (Gradient Descent): 

Update weights and biases using Equations 7 and 8; 

Model Evaluation: Evaluate the model using Equations 

11 – 15; Fine-tuning and Hyperparameter Optimization: 

Improve the model by adjusting the learning rate, 

hidden layers, number of neurons, and activation 

functions. 

𝑤𝑖𝑗
(𝑖)

𝑑𝑎𝑛 𝑏𝑗
(𝑖)

               (2) 

𝑖 is the layer index, 𝑖 is the neuron index for the input, 

and 𝑗 is the neuron index in the next layer. 

𝑧(1) =  𝑊(1). 𝑎(𝑖−1) + 𝑏(𝑖)              (3) 

𝑎(𝑙) = 𝑓(𝑧(𝑙))               (4) 

𝐿 =  −
1

𝑚
∑ (𝑦𝑖 log(Ῡ𝑖) + (1 − 𝑦𝑖) log(1 − Ῡ𝑖))𝑚

𝑖=1   (5) 

L represents the total loss value, m represents the 

number of data samples in the dataset, 𝑦𝑖 is the actual 

target value for the 𝑖 and Ῡ𝑖 is the predicted probability 

value for the 𝑖-th data point generated by the model. 

𝜕(𝐿) =∝𝐿− 𝑦               (6) 

𝜕(𝑙) = (𝑊𝑙+1))𝑇𝛿(𝑙+1). 𝑓′(𝑍(1))             (7) 

𝑊(𝑙) ≔ 𝑊𝑙 −∝
𝜕𝑊(𝑙)
𝜕𝐿               (8) 

𝑏(𝑙) ≔ 𝑏(𝑙) −∝
𝜕𝑏𝑙
𝜕𝐿               (9) 

𝜕(𝐿) is the gradient of the loss function, (𝑊𝑙+1))𝑇𝛿(𝑙+1) 

is the weight matrix connecting layer l+1. ḟ(𝑧𝑙) is the 

derivative of the activation function.  

Cost-Sensitive Learning is an approach in machine 

learning that considers the costs of different 

misclassification errors. Cost-sensitive learning (CSL) 

has two approaches in binary classification to maximize 

weights: the Weighted Loss Function and the Weighted 

Cross-Entropy Loss. The Weighted Loss Function is 

used in this research, with the formula provided in 

Equation 10. 

𝐿(𝑐𝑜𝑠𝑡) = −
1

𝑚
∑ 𝐶𝑦𝑖(𝑦𝑖 log(Ῡ𝑖) + (1 − 𝑦𝑖)log (1 −𝑚

𝑖−1 Ῡ𝑖))   (10) 

Lcost is the cost-sensitive loss function, m is the number of 

samples, and 𝐶𝑦𝑖a is the cost associated with yi, where 𝐶𝑦𝑖 

is more significant for the minority class. 

To enhance the performance of the MLP model, the 

weakness of MLP in handling class imbalance is 

addressed during the Loss Function Calculation stage 

by optimizing it with cost-sensitive learning through the 

implementation of a weighted loss function. The 

weighted loss function assigns different costs for errors 

in the majority and minority classes based on the 

consequences of each error, thereby reducing errors, 

and improving the model's performance. The proposed 

method is outlined in Algorithm 1. 

Algorithm 1: Optimization of MLP Using CSL 

Input:  

Training dataset: D={(xi, yi)} 

Cost for misclassification errors 

K: Number of training iterations 

Output: 

Final Model G(X) 

Cost Structure Determination 

Set the cost C0 for errors in the majority and C1 for errors in the 

minority class based on the respective consequences of the 

error. 

Initialization and Forward Propagation 

Use Equation (2) to initialize weight W and bias b in the MLP  

For each batch of data (X,y): perform forward propagation 

by calculating the output a(l) at each layer l using the 

appropriate activation functions with Equations (3) and (4). 

Calculate the Cost-Sensitive Loss Function: Compute the loss 

function using the cost-sensitive learning formula (10). 

Backpropagation and Weight Update: 

Calculate the gradients of the cost-sensitive loss function 

using Equations (6) and (7). 

Update weight W and biases b using the gradient descent 

optimization method with Equations (8) and (9) 

Evaluation and Fine-Tuning. 

Evaluate the model using Equations (11), (12), (13), (14), and 

(15). 

Perform fine-tuning on hyperparameters and class costs to 

improve model performance. 

Final Model G(X)  
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The MLP model in this study was configured to balance 

complexity with performance. A learning rate of 0.001 

was selected as it optimally balances convergence speed 

with model stability, avoiding premature convergence 

and excessively slow training[24]. The hidden layer 

was set to 32 neurons, based on cross-validation 

experiments that indicated this number effectively 

captures data complexity without leading to 

overfitting[25]. The Rectified Linear Unit (ReLU) 

activation function was employed for its effectiveness 

in addressing the vanishing gradient problem and its 

ability to accelerate convergence in complex neural 

network training tasks[24]. 

To further enhance the model’s performance in 

detecting fraudulent transactions, particularly within 

the context of class imbalance, CSL was implemented. 

This approach involved adjusting the classification 

error costs by assigning higher weights to the minority 

class (fraud)[26]. This adjustment ensures that 

misclassification errors for fraud transactions are 

penalized more heavily during training, thereby 

improving the model’s sensitivity to these critical cases. 

The specific weights were determined through an 

analysis of class distribution and the potential financial 

impact of misclassification, ensuring that the model 

remains focused on minimizing false negatives in the 

fraud class. Additionally, the loss function was 

modified to a weighted cross-entropy function, 

integrating class weights directly into the error 

calculation[27]. This modification was chosen because 

it effectively increases the model's focus on the 

minority class during training, thus enhancing the 

model's ability to correctly classify rare fraudulent 

transactions. 

Performance Evaluation: The subsequent phase of this 

research involves assessing the effectiveness of the 

CCFD model. This performance testing aims to 

determine the model's suitability for practical use. 

Several evaluation parameters are used, including 

Accuracy (Ac), Recall (Re), Precision (Pr), F1 Score 

(F1), and Area Under the Curve (AUC)[5]. These 

parameters provide a comprehensive assessment of the 

effectiveness and reliability of the classification model. 

The formulas for each parameter are provided in 

Equations 11 - 15[28]. 

Accuracy =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝑃𝑁
           (11) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝑇𝐹
           (12) 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝑇𝑁
            (13) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2 𝑥 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
          (14) 

𝐴𝑈𝐶 =  ∫ 𝑇𝑃𝑅(𝐹𝑃𝑅)𝑑 (𝐹𝑃𝑅)
1

0
          (15) 

In this research, statistical validation is performed 

using the Friedman Test and the Paired T-test. The 

Friedman non-parametric test compares the 

performance of several classification models on the 

same dataset[29]. This test examines the null 

hypothesis that there are no significant differences in 

the performance of these models. If the Friedman Test 

results indicate substantial differences, further 

analysis is conducted using the Paired T-test to 

identify which pairs of models have significant 

performance differences. The combination of these 

two tests provides comprehensive validation, 

ensuring that the developed model is statistically 

superior and has practical significance in its 

application[30]. 

3. Results and Discussions 

The fraud detection model for credit card transactions 

was designed to optimize the weights of the MLP using 

CSL during the loss function stage. This approach 

modifies the standard MLP by incorporating a cost-

sensitive loss function, which ensures that the model is 

more cautious in its predictions to minimize the 

consequences of misclassification, particularly for the 

minority class. The model is composed of multiple 

layers, including a Dense layer activated by ReLU, a 

BatchNormalization layer, and a Dropout layer to 

prevent overfitting. For binary classification, the output 

layer employs a sigmoid activation function. The model 

is compiled with the Adam optimizer, set to a learning 

rate of 0.001, and uses the binary_crossentropy loss 

function, with accuracy as the evaluation metric. This 

configuration was applied to the datasets described in 

Table 1. 

The performance of the implemented model was 

evaluated and compared with several other 

configurations, including the baseline MLP algorithm, 

MLP with SMOTE, and MLP with RUS. This 

evaluation utilized key metrics such as Accuracy (Ac), 

Recall (Re), F1-Score (F1), and Area Under the Curve 

(AUC), as shown in Table 2.  

Table 2. Result Evaluation of Model 

Algorithm Ac Re F1  AUC 

MLP Baseline 0.998 0.1 0.181 0.55 

MLP+Cost 

Sensitive 

0.996 0.6 0.363 0.99 

MLP+SMOTE 0.998 0.4 0.47 0.699 

MLP + RUS 0.846 0.8 0.17 0.82 

The results indicate that the CSL-optimized MLP 

significantly outperforms the baseline model in terms of 

recall and AUC, demonstrating its effectiveness in 

prioritizing the detection of fraudulent transactions. 

Specifically, the CSL-optimized MLP achieved a recall 

of 0.6 and an AUC of 0.99, which is substantially higher 

than the baseline MLP's recall of 0.1 and AUC of 0.55.  

Subsequently, the model's performance was further 

analyzed using ROC curves, presented in Figure 2, 

providing a visual representation of the discriminatory 

power of each model. The ROC curve for the CSL 

model shows a steeper rise, indicating better 

classification performance for the minority class 

(fraudulent transactions). For a more detailed analysis, 
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confusion matrices were constructed for each model, 

offering insights into their predictive capabilities, 

particularly in distinguishing between fraud and non-

fraud cases. The confusion matrices for the Baseline, 

Cost-Sensitive, SMOTE, and Under Sampling models 

are displayed in Figures 3, 4, 5, and 6, respectively. 

These matrices highlight the number of true positives, 

true negatives, false positives, and false negatives for 

each model, providing a clear visual understanding of 

their classification performance. 

 

Figure 2. ROC Curve for Measuring Model Performance 

 

Figure 3. Confusion Matrix for Baseline Model 

Among the four models, the Cost-Sensitive model 

shown in Figure 4 provides the best balance between 

detecting fraud cases (true positives) and minimizing 

false positives, thus being considered the most effective 

model for fraud detection. The higher recall of 0.6 

observed in the CSL model indicates its superior ability 

to capture fraudulent transactions, compared to the 

lower recall values of the baseline and SMOTE-

enhanced models. Furthermore, the lower false positive 

rate in the CSL model underscores its robustness in 

practical scenarios, where minimizing false alarms is 

critical to maintaining trust in the detection system.  

However, it is important to note that the performance 

gains observed in the CSL-optimized model may be 

influenced by the specific weighting strategy employed 

during training. The higher penalties assigned to 

misclassification errors in the minority class could lead 

to a trade-off between precision and recall, as evidenced 

by the moderate F1-Score of 0.363. This suggests that 

while the CSL model is highly effective in increasing 

sensitivity to fraud, it may also introduce a higher 

number of false positives, requiring further fine-tuning 

to achieve optimal performance. 

 

Figure 4. Confusion Matrix for Cost-Sensitive Learning 

 

Figure 5. Confusion Matrix for SMOTE Model 

 

Figure 6. Confusion Matrix for Under Sampling Model 
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Statistical Validation: To evaluate the reliability of the 

developed model, we will employ statistical tests, 

specifically the Friedman test and the T-test, to assess 

its performance relative to other models. The proposed 

model will serve as the control method in this 

experiment, with the significance level (α) set at 0.0016 

for the statistical tests. Typically, smaller p-values 

signify significant differences among the comparison 

methods. The results of the Friedman test and T-test for 

the baseline MLP model, which has not been optimized 

with cost-sensitive learning, are shown in Table 3. 

Table 3. Statistical Test Results 

 MLP Baseline MLP+SMOTE MLP+RUS 

Friedman 6.333 6.333 6.333 

T-Test 4.181 -1.775 -0.207 

Analysis of Performance Differences: The differences 

in performance between the CSL-optimized MLP and 

other models, such as the baseline MLP, MLP with 

SMOTE, and MLP with RUS, can be attributed to 

several key factors. Firstly, the impact of the cost-

sensitive learning approach on model performance is 

significant. By assigning higher penalties to 

misclassification errors in the minority class (fraud), the 

CSL model inherently prioritizes the detection of 

fraudulent transactions. This leads to higher recall 

values compared to the baseline MLP, which tends to 

underperform in detecting fraud due to the 

overwhelming dominance of non-fraudulent 

transactions. The weighted loss function used in CSL 

plays a crucial role in this improvement by forcing the 

model to focus more on the minority class during 

training, thus enhancing the model's sensitivity to fraud. 

Secondly, the use of SMOTE and RUS techniques for 

handling class imbalance introduces different effects on 

model performance. SMOTE, which generates 

synthetic samples for the minority class, typically 

increases recall but can sometimes introduce noise, 

leading to potential overfitting. Conversely, RUS 

reduces the size of the majority class, which can 

improve model performance by balancing the dataset 

but might also result in the loss of valuable information, 

thus affecting the model’s ability to generalize well. 

The CSL model, by directly addressing the class 

imbalance through weighted penalties rather than data 

modification, avoids these pitfalls, resulting in a more 

robust and reliable performance. Lastly, the complexity 

of the CSL model compared to the baseline MLP could 

also contribute to the observed performance 

differences. The additional computational overhead 

required to calculate and apply cost-sensitive weights 

may lead to better optimization of the model 

parameters, thus enhancing its ability to detect 

fraudulent transactions more effectively. However, this 

increased complexity could also mean that the model is 

more prone to overfitting, particularly if not carefully 

fine-tuned, as indicated by the moderate F1-Score 

observed in some instances. Overall, while the CSL-

optimized MLP demonstrates superior performance in 

detecting fraudulent transactions, these gains 

necessitate careful consideration of potential trade-offs, 

such as the balance between recall and precision, and 

the risk of overfitting, which must be managed through 

further refinement of the model. 

Potential Bias and External Factors: The CSL-

optimized MLP, while effective in detecting fraudulent 

transactions, is susceptible to overfitting due to its focus 

on the minority class. The weighted penalties applied 

during training might cause the model to become overly 

specialized in the patterns found in the training data, 

potentially reducing its ability to generalize to new, 

unseen datasets. This risk is particularly significant in 

highly imbalanced datasets, where the model may 

overemphasize certain features unique to fraudulent 

transactions within the training set. Additionally, the 

use of SMOTE and RUS for data preprocessing can 

introduce biases—SMOTE may generate synthetic 

samples that do not accurately represent real-world 

transactions, while RUS might lead to the loss of 

valuable information from the majority class, affecting 

the model’s overall robustness. External factors, such as 

evolving fraud tactics and variations in transaction data 

across different regions or industries, further challenge 

the model's long-term effectiveness. A model trained on 

historical data might underperform as fraud patterns 

change over time. Therefore, continuous model updates 

and recalibration are essential to maintaining its 

relevance and accuracy. Regular validation and the 

incorporation of new data are critical strategies to 

ensure that the model remains effective in real-world 

applications, where the dynamics of fraudulent 

behavior and data characteristics can shift rapidly. 

Comparison with Other Research: To validate the 

success of this research, we compare it with other 

studies that use the same credit card dataset and address 

class imbalance. In this study [5] tackled class 

imbalance by testing the credit card dataset using 

feature extraction and data sampling, resulting in an 

AUC of 0.97 and the highest accuracy of 0.97. In 

contrast, this study's optimization of MLP with cost-

sensitive learning achieved an AUC of 0.99 and an 

accuracy of 0.998. 

Testing on Different Datasets: Additional tests were 

conducted using different datasets to further evaluate 

the modified MLP model's performance with cost-

sensitive learning. The test datasets include e-

commerce and credit card transactions containing fraud, 

as described in Table 1. Based on Table 4, the results 

show that the MLP optimized using CCL outperforms 

the baseline MLP algorithm, MLP + SMOTE, and MLP 

+ RUS. For Dataset 1, the optimized MLP excels in 

recall and AUC compared to all other algorithms. For 

Dataset 2, all algorithms achieved a perfect 1.0 or 100% 

score. The ROC performance results demonstrate that 

the MLP optimized with Cost-Sensitive Learning 

achieved the best performance among all tested 

algorithms, as shown in Figures 7 and 8. 
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Table 4. Testing on Different Datasets 

Dataset  MLP 

Baseline 

MLP+ 

SMOTE 

MLP+ 

RUS 

MLP+ 

Cos 

E-

Commerce 

Ac 0.94 0.78 0.57 0.80 

 Re 0 0.56 0.64 0.60 

 F1 0 0.21 0.13 0.24 

 AUC 0 0.67 0.60 0.77 

 Ac 0.98 0.99 0.96 1.00 

Credit 

Card 2 

Re 0.90 0.97 1.00 1.00 

 F1 0.95 1.00 0.86 1.00 

 AUC 0.95 0.99 0.98 1.00 

 

Figure 7. ROC Dataset E-Commerce 

 

Figure 8. ROC Dataset Credit Card 2 

The proposed model has been successfully 

implemented and tested for its performance in CCFD 

using a highly imbalanced dataset. The results indicate 

that the MLP optimized with CSL outperforms the 

baseline MLP and other methods, such as MLP with 

SMOTE and MLP with RUS, particularly in terms of 

AUC and recall metrics. Specifically, the CSL-

optimized model achieved an AUC of 0.95 and a recall 

of 0.6, demonstrating its effectiveness in prioritizing the 

detection of fraudulent transactions. These findings 

were validated using statistical tests, including the 

Friedman test and T-test, which confirmed significant 

performance improvements over the baseline model. 

This study utilizes a real-world credit card transaction 

dataset from Kaggle, with 284,807 records, of which 

only 492 are fraudulent, representing just 0.172% of the 

data. The CSL approach was implemented by 

modifying the loss function to apply higher penalties for 

misclassifications in the minority class. This ensures 

that the model becomes more sensitive to detecting 

fraud, an essential aspect when working with highly 

imbalanced datasets. The implementation of CSL 

involves several key stages, including initializing 

weights and biases, forward propagation, cost-based 

loss calculation, and backpropagation with gradient 

descent optimization.  

When compared to other studies that have used similar 

datasets and approaches, this model demonstrates 

superior accuracy (0.996) and AUC (0.99). The results 

underscore the practical value of Cost-Sensitive 

Learning in enhancing the performance of MLPs for 

fraud detection in financial transactions. The 

implications for the financial industry are significant, as 

a more sensitive model can substantially reduce 

financial losses due to fraud and increase customer trust 

in payment systems. However, the approach is not 

without limitations. The need for careful parameter 

tuning to avoid overfitting, as well as the potential 

increase in computational resource requirements due to 

the complexity of the weighted loss function, are critical 

factors that must be managed. Future research should 

focus on refining these aspects to ensure that the 

proposed model can be effectively scaled and applied in 

real-world environments, where the dynamics of fraud 

and transaction data are continually evolving. 

4. Conclusions 

This research successfully implemented and tested the 

performance of a model for CCFD using a highly 

imbalanced dataset. The proposed model, which 

utilized CSL as the optimization approach for MLP, 

was compared with the baseline MLP, MLP optimized 

with SMOTE, and MLP optimized with RUS. The 

evaluation demonstrated that the MLP with CSL 

significantly outperformed other methods, particularly 

in terms of AUC and recall, achieving an AUC of 0.99 

and a recall of 0.6. The Friedman and T-test further 

validated that the performance improvements achieved 

with CSL were statistically significant. Compared to 

other studies using similar datasets, this model showed 

a slight reduction in AUC but achieved higher accuracy 

(0.996), confirming the effectiveness of the CSL 

approach. This result suggests that CSL is a more 

reliable strategy for improving MLP performance in 

detecting credit card fraud within imbalanced datasets. 

The practical implications of this research are 

substantial for the financial industry, as the enhanced 

sensitivity of the model can lead to reduced financial 

losses and increased trust in payment systems. 

However, the research also identified several 

limitations, such as the use of static weights for the 

minority class and the limited validation across diverse 

datasets. Future research should focus on exploring 

dynamic weighting strategies, incorporating a broader 

range of datasets, and implementing automated 

hyperparameter optimization to further improve model 
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performance. These steps will ensure that the proposed 

model can be effectively scaled and adapted to real-

world environments where the characteristics of 

fraudulent behavior are continuously evolving. 
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