
 Received: 07-07-2024 | Accepted: 11-09-2024 | Published Online: 14-10-2024

631

Accredited SINTA 2 Ranking
Decree of the Director General of Higher Education, Research, and Technology, No. 158/E/KPT/2021

Validity period from Volume 5 Number 2 of 2021 to Volume 10 Number 1 of 2026

Published online at: http://jurnal.iaii.or.id

JURNAL RESTI

(Rekayasa Sistem dan Teknologi Informasi)

Vol. 8 No. 5 (2024) 631 - 643 e-ISSN: 2580-0760

An Investigation Towards Resampling Techniques and Classification

Algorithms on CM1 NASA PROMISE Dataset for Software Defect

Prediction

Agung Fatwanto1*, Muh Nur Aslam2, Rebbecah Ndugi3, Muhammad Syafrudin4
1, 2Informatics Department, Faculty of Science and Technology, UIN Sunan Kalijaga, Yogyakarta, Indonesia

3Faculty of Mathematics and Computer Science, St. Petersburg State University, St. Petersburg, Russia
4Department of Artificial Intelligence and Data Science, Sejong University, Seoul, Republic of Korea

1agung.fatwanto@uin-suka.ac.id, 223206051031@student.uink-suka.ac.id, 3rebbecahndungi94@gmail.com,
4udin@sejong.ac.kr

Abstract

Software defect prediction is a practical approach to improving the quality and efficiency of software testing processes.

However, establishing robust and trustworthy models for software defect prediction is quite challenging due to the limitation

of historical datasets that most developers are capable of collecting. The inherently imbalanced nature of most software defect

datasets also posed another problem. Therefore, an insight into how to properly construct software defect prediction models

on a small, yet imbalanced, dataset is required. The objective of this study is therefore to provide the required insight by way

of investigating and comparing a number of resampling techniques, classification algorithms, and evaluation measurements

(metrics) for building software defect prediction models on CM1 NASA PROMISE data as the representation of a small yet

unbalanced dataset. This study is comparative descriptive research. It follows a positivist (quantitative) approach. Data were

collected through observation towards experiments on four categories of resampling techniques (oversampling, under

sampling, ensemble, and combine) combined with three categories of machine learning classification algorithms (traditional,

ensemble, and neural network) to predict defective software modules on CM1 NASA PROMISE dataset. Training processes

were carried out twice, each of which used the 5-fold cross-validation and the 70% training and 30% testing data splitting

(holdout) method. Our result shows that the combined and oversampling techniques provide a positive effect on the

performance of the models. In the context of classification models, ensemble-based algorithms, which extend the decision tree

classification mechanism such as Random Forest and eXtreme Gradient Boosting, achieved sufficiently good performance for

predicting defective software modules. Regarding the evaluation measurements, the combined and rank-based performance

metrics yielded modest variance values, which is deemed suitable for evaluating the performance of the models in this context.

Keywords: software defect prediction; machine learning; classification algorithm; imbalanced data; resampling

How to Cite: A. Fatwanto, M. Nur Aslam, R. Ndugi, T. Huguet, and M. Syafrudin, “An Investigation Towards Resampling

Techniques and Classification Algorithms on CM1 NASA PROMISE Dataset for Software Defect Prediction”, J. RESTI

(Rekayasa Sist. Teknol. Inf.) , vol. 8, no. 5, pp. 631 - 643, Oct. 2024.

DOI: https://doi.org/10.29207/resti.v8i5.5910

1. Introduction

The need for new software system applications is

rapidly increasing to meet the never-ending user

demand. The newly demanded software system

applications are also becoming increasingly more

complex and complicated. This condition obviously has

an impact on raising the required time and cost of

software development due to the need for a

comprehensive testing process.

Arar and Ayan, in their study, found that 23% of

software development costs are spent on quality

assurance and software testing alone [1]. One effort that

can be made to reduce the time and cost of software

testing is by way of predicting potential defects in

software modules [2]. Machine learning algorithms can

be utilized to develop these predicting models.

Predicting defective modules helps software developers

allocate resources more efficiently by focusing on

https://doi.org/10.29207/resti.v8i5.5910

 Author, Agung Fatwanto, Muh Nur Aslam, Rebbecah Ndugi, Muhammad Syafrudin

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 632

modules likely to contain defects [3]. The main purpose

of predicting defects within software modules is to

determine which modules will be prioritized for further

in-depth testing, either manually or automatically [4].

The method for finding defective/faulty software

modules is known as Software Defect Prediction (SDP).

On some occasions, it is also known as Software Fault

Prediction (SFP). SDP/SFP is employed to assist in

identifying potential defective/faulty software modules

and calculating the number of potential defects on

components/modules of the system being developed

[5]. Predicting the number of potential errors can

provide better insight into how much effort and

resources are required to eliminate errors from software

modules.

SDP/SFP have been and still attract a lot of researchers

to study this particular topic such as reported in [6], [7].

A number of studies on SDP/SFP especially regarding

the use of resampling techniques to handle imbalanced

datasets have been conducted previously. A study as

reported in [8], describes the application of

undersampling techniques to minority classes (in this

case the defective software module class) to resample

the imbalanced dataset on software defects prediction.

A study as reported in [9] employed SMOTE to handle

imbalanced datasets in order to improve the

classification performance. Another study on the impact

of rebalancing techniques on the performance of defect

prediction models is reported in [10].

Studies on the application of machine learning-based

classification processes for SDP/SFP have also been

conducted by several researchers. One study discusses

the application of the kNN algorithm combined with the

Random Walk Over Sampling technique to handle class

imbalance for predicting defective software modules

[11]. In addition, there is another study that discusses

the optimization of Naïve Bayes using Gain Ratio to

improve the accuracy of defective software module

prediction [12].

A series of studies on the use of the boosting and

stacking-based algorithm for SDP/SFP have also been

conducted. In these studies, it was reported that this

ensemble algorithm provides sufficiently good

prediction results [13], [14], [15].

Nevertheless, as far as our exploration is concerned,

there is still no study which covers a comprehensive

investigation of the effect of resampling techniques and

classification algorithms performance on small yet

imbalanced datasets that are normally found in software

defects data. As an effort to provide a relatively

comprehensive picture, this study experimented with

ten resampling techniques which represent four types of

resampling categories, namely oversampling,

undersampling, ensemble, and combination; combined

with the use of eight classification algorithms which

represent three types of classification algorithm

categories, namely traditional, ensemble, and neural

network. The result will then be evaluated for their

performance using a set of measures which consist of

single, combined, and rank performance measures.

As for the framework of our research, we put forward

three research questions as follows:

RQ1: What type of resampling techniques would

provide a potentially positive effect on the performance

of the software defects prediction model on CM1 NASA

PROMISE data (as the representation of a small yet

imbalanced dataset)?

RQ2: What type of classification algorithms would

provide better performance for predicting defective

software modules on CM1 NASA PROMISE data (as

the representation of a small yet imbalanced dataset)?

RQ3: What type of evaluation measurements (metrics)

are deemed suitable for assessing the performance of

software defect prediction models on CM1 NASA

PROMISE data (as the representation of a small yet

imbalanced dataset)?

The output of this study is expected to provide

comprehensive insight into the effect of using particular

resampling techniques and machine learning

classification algorithms on software defect prediction.

This insight is especially of interest for software

developers which can act as their guideline for

developing software defect prediction models.

2. Research Methods

This study is descriptive comparative research. It

follows an empirical quantitative approach. Data were

collected through observations towards experiments on

resampling techniques and classification algorithms.

The obtained classification results were then used to

measure the models’ performance. The flow of our

research is depicted in Figure 1.

The research began with the data collection process. It

was then followed by the experimental stage. We

conducted our experiment on Google Colab. We

employed Python 3.10.12 and used a number of

libraries such as imblearn 0.10.1 for resampling, sklearn

1.2.2 for classification (LogisticRegression, SVC,

KNeighbors, GaussianNB, DecisionTree,

RandomForest, and MLP), and xgboost 2.0.3 for XGB

classifier.

The experimental stage started with data preprocessing,

in which the imbalanced dataset was resampled using

ten techniques representing four types of resampling

categories, namely UnderSampling, OverSampling,

EnsembleSampling and CombineSampling. The new

resampled datasets were then used as the material for

training, validation, and testing processes of eight

classification algorithms representing three types of

machine learning categories, namely traditional,

ensemble, and neural network models.

The training, validation, and testing processes were

carried out twice, firstly using the 5-fold cross-

validation and secondly using the holdout method (70%

 Author, Agung Fatwanto, Muh Nur Aslam, Rebbecah Ndugi, Muhammad Syafrudin

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 633

training, 30% testing). The results of the testing process

are then evaluated using 15 measurements (metrics)

representing three types of performance measurement

categories, namely single, combined, and rank

performance measurements. The values of these

measurements are then used as the basis for performing

a descriptive comparative analysis towards the effect of

resampling techniques and classification algorithms

performance.

Figure 1. Research Method

2.1 Data Collection

This study used a software defect prediction dataset

from the NASA PROMISE Software Engineering

Database. This is a public dataset and can be obtained

from the following link:

http://promise.site.uottawa.ca/SERepository/datasets-

page.html or

https://github.com/ApoorvaKrisna/NASA-promise-

dataset-repository. Compared to those from the NASA

Metrics Data Program (MDP), all software defect

prediction datasets from PROMISE have fewer

variables (features) [16]. These datasets are hence

deemed more suitable to be chosen for this type of study

since fewer variables are easier and cheaper to collect

hence would be obviously in favour of developers and

relatively feasible to be practised on typical software

development projects.

Out of 13 software defect prediction datasets from the

NASA PROMISE Software Engineering Database,

there are five datasets which contain the fewest

variables, namely: CM1, JM1, KC1, KC2, and PC1.

This study specifically used the CM1 dataset mainly

because CM1 bears the characteristics that best

represent the common problematic condition faced by

most developers in collecting software defect datasets

on typical projects. The size of most software systems

found on typical medium-sized business projects are

around hundreds of modules. It is categorized as small

in the context of the size of the machine learning

dataset. Yet, most software defect datasets are

inherently imbalanced where positive cases (the

occurrence of defects in modules) are way too small.

Compared to other software defect datasets in

the NASA PROMISE Software Engineering Database,

CM1 best represents both characteristics. It has the

smallest amount of data and also has the most extreme

proportion of class imbalance between defective and

non-defective classes (or having the most extreme

defect rate). We also considered not combining CM1

with some other datasets to train the models in our

experiment since they were collected from different

projects which were potentially having different

characteristics. An overview of the software defect

prediction dataset from the NASA PROMISE Software

Engineering Database is shown in Table 1.

Table 1. The NASA PROMISE software defect prediction datasets

No Nane # of

Var

of

Data

[+ ; -] % of

Defects

1 CM1 22 498 [49 ; 449] 9.83%

2 JM1 22 10,885 [8779 ; 2106] 80.65%

3 KC1 22 2,109 [326 ; 1783] 15.45%

4 KC2 22 522 [107 ; 415] 20.5%

5 PC1 22 1,109 [1032 ; 77] 93.05%

http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html
https://github.com/ApoorvaKrisna/NASA-promise-dataset-repository
https://github.com/ApoorvaKrisna/NASA-promise-dataset-repository

 Author, Agung Fatwanto, Muh Nur Aslam, Rebbecah Ndugi, Muhammad Syafrudin

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 634

Software Defect Prediction dataset from the NASA

PROMISE Software Engineering Database has a total

of 22 variables data. It consists of 21 independent

variables and one dependent variable data. The

independent variables data are in the form of

quantitative measurements of the program source code.

Four variables’ data are measurements based on

McCabe's theory, 11 variables data are measures based

on Halstead's theory, and the other six variables’ data

are additional measurements. The dependent variable is

the defect classification label in binary form. All

independent variables have numeric data types (interval

& ratio), while the independent variables have binary

(binomial) data types (i.e. true = defect or false = not

defect). The explanation of each variable in the dataset

used for this study is shown in Table 2.

Table 2. List of variables in CM1 dataset

No. Variable Base Type

1 Line of Code McCabe Numeric

2 Cyclomatic Complexity McCabe Numeric

3 Essential Complexity McCabe Numeric

4 Design Complexity McCabe Numeric

5 Halstead Operator and Operand Halstead Numeric

6 Halstead Volume Halstead Numeric

7 Halstead Program Length Halstead Numeric

8 Halstead Difficulty Halstead Numeric

9 Halstead Intelligence Halstead Numeric

10 Halstead Effort Halstead Numeric

11 Halstead Delivered Bug Halstead Numeric

12 Halstead Time Estimator Halstead Numeric

13 Halstead Line Count Halstead Numeric

14 Halstead Comments Count Halstead Numeric

15 Halstead Blank Line Count Halstead Numeric

16 Line of Code and Comments Misc. Numeric

17 Unique Operators Misc. Numeric

18 Unique Operands Misc. Numeric

19 Total Operators Misc. Numeric

20 Total Operands Misc. Numeric

21 Branch Count Misc. Numeric

22 Defects Misc. Boolean

2.2 Preprocessing

Prior to performing the experiment, first, the raw

dataset will normally go through pre-processing

activities. During pre-processing, several treatments

will generally be carried out to the raw dataset,

including i) a data cleaning process to find empty and

inconsistent data items, ii) a data transformation

(normalization) process to standardize the whole data so

that they will have the same basis unit in order to make

the data analysis process become feasible to perform,

iii) resampling process to balance the proportion of

class distribution, especially for the imbalanced dataset.

After the data is deemed sufficient to be used as the

material for training the model, it is continued to the

experimental stage. Specifically in this study, the only

preprocessing activity performed was the resampling

process.

One of the main activities of this study was to

investigate the effect of using several resampling

techniques on small yet imbalanced datasets for

predicting defective software modules. The resampling

techniques experimented in this research represent four

categories, namely oversampling, undersampling,

ensemble, and combination. The experimented

resampling techniques include RandomOverSampling

(ROS), Synthetic Minority Oversampling Technique

(SMOTE), and Adaptive Synthetic Sampling Approach

(ADASYN) three of which represent the oversampling

technique category; RandomUnderSampling (RUS),

TomekLinks, and NearMiss in which three of them

represent the undersampling technique category;

EasyEnsemble and RUSBoost in which both represent

ensemble technique category; and Synthetic Minority

Oversampling Technique Edited Nearest Neighbors

(SMOTEENN) and SMOTETomek in which both

represent combination techniques category.

2.3 Training and Classification

In addition to investigating the effect of several

resampling techniques on small yet imbalanced

datasets, this study also investigated the performance of

several machine learning classification algorithms,

especially for predicting defective software modules.

The experiment of eight algorithms for predicting

defective software modules was carried out twice. The

first experiment applies a k-fold cross-validation

strategy (with k=5), and the second experiment applies

a dataset-splitting strategy with a proportion of 70% for

training and 30% for testing. Our reason why choosing

k=5 for the k-fold cross-validation and 70%: 30%

proportion for the holdout strategy was following the

study as reported in [17], and [18] respectively. In our

experiment, we chose to leave the default

hyperparameter arrangement as originally set by all

employed libraries as is in order to provide an authentic

description of each algorithm’s performance.

There are eight classification algorithms experimented

in this study, i.e. Logistic Regression (LR), Support

Vector Machine (SVM), k-nearest Neighbors (kNN)

with k=5, Naïve Bayes (NB), Decision Tree (DT),

Random Forest (RF), ExtremeGradientBoosting

(XGB), and Multi-Layer Perceptron (MLP). The first

five algorithms represent the traditional machine

learning algorithm category, RF and XGB represent the

ensemble category, while the last algorithm represents

the neural network category.

2.4 Evaluation

Evaluation of the effect of resampling techniques

combined with classification algorithms was measured

using three types of measurements. First, based on

single performance measures, which consist of

accuracy, precision, sensitivity (recall), and specificity.

Second, based on a combination of performance

measures, which consist of F-Measure (F1-Score),

Adjusted F-Measure (AGF), balanced accuracy,

Youden's Index, positive and negative likelihood,

Matthew's Correlation Coefficient (MCC), Cohen's

Kappa, geometric mean (G-mean), and discriminant

power. Third, based on rank performance measures,

which consist of Receiver Operating Characteristic

 Author, Agung Fatwanto, Muh Nur Aslam, Rebbecah Ndugi, Muhammad Syafrudin

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 635

(ROC) Curve / Area Under the Curve (AUC) and lift

charts.

For single performance measures, accuracy is normally

the most frequently reported value for classification

tasks. Accuracy measures the overall classification

correctness of a model. Precision measures model

exactness in performing classification, while sensitivity

(recall) measures the model’s effectiveness in

classifying the minority class, by assessing the model's

accuracy against positive cases. Meanwhile, specificity

measures the model's effectiveness in classifying the

majority class (negative), namely assessing the model's

accuracy against negative cases. These single

performance measures have values ranging from 0 to 1

where the larger the values mean better classifier

models.

As for the combined measure, F-Measure (F1-Score)

measures a harmonic mean of the precision and

sensitivity. The F-Measure value shows the balance

between precision and sensitivity. If either the precision

or sensitivity value is 0, then the F-Measure is also 0. F-

Measure is a good indicator in cases of fairly balanced

datasets. For cases of imbalanced datasets, AGF is a

better alternative. AGF measures all raw elements of the

confusion matrix and gives more weight to patterns that

are correctly classified in the minority class (positive

cases). High F-Measure and AGF values indicate that

the model is a good classifier of the minority class

(positive cases). Balanced accuracy is the average

accuracy obtained from both positive and negative

cases. It is the arithmetic mean of sensitivity and

specificity. The balanced accuracy value is slightly

lower than the (single measurement) accuracy value if

the classification performance is equally good in

positive and negative cases since it places same weight

to both cases. However, the balanced accuracy value

will sharply decrease compared to the (single

measurement) accuracy value if the model’s high

accuracy is benefited from the distribution of majority

class in the dataset. Youden's Index measures the

model's ability to avoid misclassification. This index

places equal weight on the model's performance in both

positive and negative cases. A high Youden's Index

value indicates that the model is a good classifier.

Likelihood is a ratio of the model's classification

performance measurements. Positive likelihood

measures the ratio of the model's probability of

predicting true positive cases as positive with the

probability of predicting true negative cases as positive.

While negative likelihood measures the ratio of the

model's probability of predicting true negative cases as

positive with the probability of predicting true negative

cases as negative. A high positive likelihood value

indicates good model performance in positive cases,

and conversely, a low negative likelihood value

indicates good model performance in negative cases.

MCC measures the correlation coefficient between the

classification prediction results and the observed

conditions. MCC is one of the measures that is least

affected by imbalanced data. MCC values range from -

1 to +1. An MCC value of +1 indicates that the model

is able to predict perfectly, a value of 0 indicates that

the model's predictive ability is equal to random

prediction, and a value of -1 indicates that the model has

the worst predictive performance. Cohen's Kappa

measures the degree of accuracy that is likely to occur

purely by chance. Cohen's Kappa values also range

from -1 to +1. A value of +1 indicates that there is a

perfect match between the model's prediction and the

actual class, a value of 0 indicates that there is no match

between the model's prediction and the actual class, and

a value of -1 indicates a complete mismatch between the

model's prediction and the actual class. G-mean

measures the balance between classification

performance on positive and negative cases. This

measure is very good to use as a guide to avoid

overfitting in negative cases and underfitting in positive

cases. A low G-mean value indicates poor performance

in classifying positive cases even if the negative cases

have been correctly classified. Discriminant power

measures the combination of sensitivity and specificity.

A discriminant power value above 3 indicates a good

performing model, a value between 2-3 indicates fair

performance, a value between 1-2 indicates limited

performance, and a value less than 1 indicates a poor

classifier.

As for the rank performance measure, ROC measures

the balance between sensitivity and specificity along a

continuum using a curve. AUC is the area under the

ROC curve. A ROC/AUC value of 1 indicates a good

classifier, while a value of 0.5 indicates poor model

performance. Lift charts are tools that can be used to

measure model effectiveness by calculating the ratio

between the outcomes obtained. Lift charts assess the

model's ability to detect events of interest in the data.

For example, if there are n events of interest in the data

to be classified, a good model will be able to place a

higher score for the n events than data the non-events

data. A model with perfect performance will produce n

events of interest as the n highest-rank data. A high lift

chart value indicates good performance.

3. Results and Discussions

The experiment as has been conducted in this study had

successfully produced a number of insightful data.

Section 3.1 presents all gathered data from the

experiment in detail.

3.1 Results

Our experiment started with resampling the original

CM1 dataset from the NASA PROMISE database. The

dataset which was originally consist of 49 positive and

449 negative samples was resampled using ten different

techniques. These resampling processes yielded various

class proportions as presented in Table 3.

Based on the data as presented in Table 3, it can be seen

that oversampling techniques had doubled the dataset

size. They did it by randomly duplicating the positive

 Author, Agung Fatwanto, Muh Nur Aslam, Rebbecah Ndugi, Muhammad Syafrudin

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 636

samples (in the case of ROS) or creating synthetic new

positive samples (in the case of SMOTE and

ADASYN).

Table 3. Class Proportion on Dataset after Resampling

No

.

Technique Positive

(Defect)

Negative

(No Defect)

Total

1 Original Dataset 49 449 498

2 ROS 449 449 898

3 SMOTE 449 449 898

4 ADASYN 465 449 914

5 RUS 49 49 98

6 Tomek Links 49 432 481

7 NearMiss 49 49 98

8 EasyEnsemble 49 449 498

9 RUSBoost 49 449 498

10 SMOTEENN 232 205 437

11 SMOTETomek 400 400 800

Meanwhile, two of the undersampling techniques

sharply decreased the dataset size. RUS randomly

deleted negative samples to balance with the size of the

positive samples, while NearMiss deleted a lot of

negative samples which have close proximity to the

positive samples. As for Tomek Links, it deleted only

a few negative samples that are paired (have the closest

distance) with those from the positive class.

Both ensemble techniques that were tried in our

experiment did not change the size and proportion of the

original dataset. It seemed because ensemble techniques

basically only split the dataset into a number of

balanced subsets and then train the models on each

subset. They therefore did not either add or delete any

samples in the dataset.

As for the combined techniques, i.e. SMOTEENN and

SMOTETomek, they yielded relatively balanced class

proportions. The total size of the resampled datasets

produced by these two techniques is however

significantly different. In addition to adding synthetic

positive samples, SMOTEENN deleted more negative

samples than SMOTETomek. It mainly because

SMOTEENN delete those whose most of their

neighbors are from the positive cases while

SMOTETomek only delete those whose pairs (closest

neighbor) are from positive cases.

Subsequently, after finishing with the resampling

processes, our experiment was continued with training,

validating, and testing eight different algorithms. This

part of the process was performed twice. First, it was

performed on a 5-fold cross validation session. Second,

it was done on 70% : 30% holdout session. The

performance of the experimented algorithms was then

evaluated using 16 measurements (metrics). Table 4

presents the result of the testing to the classification

models.

Table 4. Testing Result of the Classification Models

R A
5-Fold Holdout

TP TN FP FN TP TN FP FN

A

1 1,2 87,8 2 8,6 0 87 1 12

2 0 89,8 0 9,8 0 88 0 12

3 0 88 1,8 9,8 0 88 0 12

4 3,2 81,4 8,4 6,6 2 86 2 10

R A
5-Fold Holdout

TP TN FP FN TP TN FP FN

5 2,6 80,2 9,6 7,2 4 82 6 8

6 0,4 88,6 1,2 9,4 0 87 1 12

7 1,8 86 3,8 8 1 85 3 11

8 1,4 77,2 12,6 8,4 0 88 0 12

B

1 67,2 71,4 18,4 22,6 100 109 30 31

2 35,4 73,6 16,2 54,4 33 77 19 51

3 88,6 63,6 26,2 1,2 131 83 56 0

4 28,8 78,2 11,6 61 44 120 19 87

5 89 79,8 10 0,8 131 128 11 0

6 89,8 84,4 5,4 0 131 128 11 0

7 89,8 82,4 7,4 0 131 126 13 0

8 72,8 46,4 43,4 17 117 54 85 14

C

1 66,8 74 15,8 23 96 114 25 35

2 37 73,6 16,2 52,8 37 76 20 47

3 71,6 57,8 32 18,2 96 86 53 35

4 34,2 78,2 11,6 55,6 48 120 19 83

5 81,8 75,4 14,4 8 121 110 29 10

6 87 78,6 11,2 2,8 127 123 16 4

7 87,8 80,8 9 2 123 123 16 8

8 63,8 45,6 44,2 26 52 120 19 79

D

1 72,2 71,4 18,4 20,8 106 109 33 27

2 36,8 72,2 17,6 56,2 32 76 18 57

3 73,4 57 32,8 19,6 110 75 67 23

4 34 76,8 13 59 43 124 18 90

5 85,6 76,4 13,4 7,4 124 119 23 9

6 91,6 79,4 10,4 1,4 127 123 19 6

7 90 78,6 11,2 3 129 120 22 4

8 63,2 46,8 43 29,8 133 30 112 0

E

1 5,8 6,2 3,6 4 6 12 5 7

2 3,4 6,2 3,6 6,4 0 11 1 8

3 4,8 5,4 4,4 5 7 6 11 6

4 3,8 7,4 2,4 6 5 14 3 8

5 5,2 6 3,8 4,6 8 13 4 5

6 6,2 7 2,8 3,6 9 14 3 4

7 6 6,4 3,4 3,8 8 15 2 5

8 2,8 7 2,8 7 0 17 0 13

F

1 1,2 84 2,4 8,6 1 123 5 16

2 0 86,4 0 9,8 0 85 0 12

3 0,2 84,4 2 9,6 0 127 1 17

4 2,8 79,4 7 7 5 123 5 12

5 2,2 77,8 8,6 7,6 8 122 6 9

6 0,8 84,8 1,6 9 1 126 2 16

7 2 81,8 4,6 7,8 2 122 6 15

8 0,2 86 0,4 9,6 0 128 0 17

G

1 8,6 9,8 0 1,2 11 17 0 2

2 4,8 9,8 0 5 1 12 0 7

3 8,2 9,8 0 1,6 11 17 0 2

4 8,4 9,8 0 1,4 11 17 0 2

5 8,8 8,6 1,2 1 11 15 2 2

6 8,8 9,4 0,4 1 11 16 1 2

7 8,8 9,4 0,4 1 11 16 1 2

8 9 2,8 7 0,8 1 17 0 12

H

1 1,2 87,8 2 8,6 0 133 1 16

2 0 89,8 0 9,8 0 88 0 12

3 0 88 1,8 9,8 0 131 3 16

4 3,2 81,4 8,4 6,6 2 126 8 14

5 2,8 81,2 8,6 7 2 126 8 14

6 0,4 89,2 0,6 9,4 0 130 4 16

7 1,8 86 3,8 8 0 130 4 16

8 0 85,8 4 9,8 1 133 1 15

I

1 1,2 87,8 2 8,6 0 133 1 16

2 0 89,8 0 9,8 0 88 0 12

3 0 88 1,8 9,8 0 131 3 16

4 3,2 81,4 8,4 6,6 2 126 8 14

5 2,8 82 7,8 7 1 124 10 15

6 0,6 88,4 1,4 9,2 0 131 3 16

7 1,8 86 3,8 8 0 130 4 16

8 0,8 71,6 18,2 9 0 134 0 16

J

1 38,4 35 6 8 47 52 16 17

2 21,6 35,4 5,6 24,8 20 39 7 22

3 44 35,6 5,4 2,4 55 57 11 9

4 24,6 38,4 2,6 21,8 31 64 4 33

5 43 37,2 3,8 3,4 61 59 9 3

 Author, Agung Fatwanto, Muh Nur Aslam, Rebbecah Ndugi, Muhammad Syafrudin

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 637

R A
5-Fold Holdout

TP TN FP FN TP TN FP FN

6 45,8 38,4 2,6 0,6 61 59 9 3

7 45 38,4 2,6 1,4 63 62 6 1

8 29,2 30,8 10,2 17,2 54 38 30 10

K

1 60,8 66,2 13,8 19,2 87 103 22 28

2 32,8 66,8 13,2 47,2 33 73 7 47

3 66,4 54,4 25,6 13,6 89 89 36 26

4 31 71,6 8,4 49 43 113 12 72

5 71,2 70,4 9,6 8,8 104 113 12 11

6 77,8 71,8 8,2 2,2 113 113 12 2

7 78,4 73 7 1,6 115 113 12 0

8 38 58,8 21,2 42 0 125 0 115

Note:

Resampling Technique (R): Without Resampling (A), ROS (B),

SMOTE (C), ADASYN (D), RUS (E), Tomek Links (F), NearMiss

(G), EasyEnsemble (H), RUSBoost (I).

Algorithm (A): LR (1), SVM (2), kNN (3), NB (4), DT (5), RF (6),

XGB (7), NN/MLP (8).

Red-Colored No.: Best Value; Blue-Colored No.: Worst Value

Following the result of our experiment, we observed

several interesting findings. First, some resampling

techniques seemed to have a positive effect on the

models’ performance. This is apparent, especially when

oversampling and combined techniques. Other types of

techniques, however, do not likely show any positive

effect on models’ performance. Second, ensemble

algorithms (in this case RF and XGB) achieved

sufficiently better performance. This result was

consistent on both 5-fold cross-validation and 70%:

30% holdout training sessions. One traditional machine

learning algorithm, i.e. DT, also scored relatively high

performance compared to others. MLP, as the

representation of a neural network algorithm, provides

low performance in this context.

3.2 Discussions

In order to achieve the objective of this study, our

research was designed in a framework to answer three

research questions. This discussion section is therefore

elaborated around these three research questions.

RQ1: What type of resampling techniques would

provide a potentially positive effect on the performance

of the software defects prediction model on CM1 NASA

PROMISE data (as the representation of a small yet

imbalanced dataset)?

Based on the result of our experiment, it is obviously

evidenced that some type of resampling techniques did

provide positive effect on models’ performance in

classifying the defective software modules on the CM1

NASA PROMISE dataset. It found that most models

apparently scored low performance when trained using

the original dataset which is highly imbalanced.

The case was different when the models were trained

using resampled datasets, especially those processed

with oversampling and combined techniques. Most of

the models’ performance tends to improve when trained

using resampled datasets produced by these two types

of methods. There is also one undersampling technique,

i.e. NearMiss, which also provides a positive effect on

the models’ performance. However, the effect of the use

of these resampling techniques was not strongly similar.

This gradation is visualized in a color scale matrix as

depicted in Figure 2.

The result from the two types of training sessions, i.e.

5-fold cross-validation and 70%: 30% holdout, as

depicted in the colour scale matrix in Figure 2 showing

a strongly consistent pattern. A more highlighted

(darker) area in the matrix represents a higher effect on

the models’ performance. It seems that oversampling

techniques (i.e. ROS, SMOTE and ADASYN) and

combined techniques (i.e. SMOTEENN and

SMOTETomek) provide sufficiently positive effects.

Interestingly, there was one undersampling technique,

i.e. NearMiss, which also offers a good effect on

models’ performance.

The resampling process of the ROS technique was

carried out by duplicating randomly selected samples

from the minority class so that the number of samples

from the minority class increases and can balance the

samples from the majority class [19]. ROS, therefore,

does not add any new information to the dataset since it

basically only duplicates existing data. For the context

of training with small yet imbalanced datasets such as

on software defect data, however, models’ capability

had gained improvement in detecting positive cases

benefiting from the addition of more positive samples

even though they are basically duplicated with no new

information added.

In a slightly different context, the SMOTE technique

carried out the resampling process by creating new

sample instances based on a convex combination of

adjacent samples (creating new synthetic samples by

randomly selecting samples from the minority class and

interpolating the randomly selected samples with a

number of k samples which have the closest Euclidean

distance), hence later the model might better recognize

important minority classes [20]. However, SMOTE

risks producing unrealistic instances and increases the

chance of overfitting. With this mechanism, hence,

SMOTE provided a relatively similar positive effect to

models’ performance as ROS even though with lesser

power.

Similar to SMOTE, the ADASYN technique carried out

the resampling process by creating new synthetic

samples from the minority class which are considered

more difficult to learn (more difficult to classify

correctly) rather than uniformly resampling all samples

from the minority class, by way of placing different

weight distributions to the two types of classes [21].

However, ADASYN risks in producing instances that

do not reflect the underlying distribution of the minority

class, increasing the chance of overfitting and is

sensitive to noise and outliers in the dataset, thus

affecting the quality of the produced new synthetic

samples. Considering this mechanism, ADASYN offers

a fairly similar positive effect on models’ performance

as SMOTE.

Most of the undersampling techniques had shown

relatively minor effects in our experiment. Except for

 Author, Agung Fatwanto, Muh Nur Aslam, Rebbecah Ndugi, Muhammad Syafrudin

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 638

the case of NearMiss, other undersampling techniques

did not provide any valuable improvement to

the models’ performance.

The resampling process of the RUS technique was

carried out by deleting randomly selected data samples

from the majority class so that the number of samples

from the majority class decreases and can be balanced

with the samples from the minority class [19].

However, RUS risks in eliminating samples that may

contain valuable information for the training process.

Our experiment showed that having a more balanced

smaller dataset for the training processes indeed

improves models’ performance on some measurements

such as precision, sensitivity (recall), and G-mean.

However, the performance did not show significant

improvement based on other metrics.

This case is quite similar with the TomekLinks

technique. The TomekLinks technique carried out the

resampling process by identifying pairs of samples

having the closest Euclidean distance where each of

them belongs to a different class (majority/negative and

minority/positive) and then deleting part of the paired

sample that belongs to the majority class [22]. In some

cases, samples from the minority class are also going to

be deleted. By deleting these samples, the distance

between different classes becomes farther, so that the

boundaries for decision-making between two different

classes also become clearer. TomekLinks is able to

reduce noise in the dataset. However, TomekLinks risks

deleting too many samples from the minority class,

which potentially leads to underfitting of the training

process. Another drawback of TomekLinks is that it

normally cannot completely produce balanced data so

sometimes it needs to be combined with other

resampling techniques. Our experiment proved this

theory. The resampling result of TomekLinks still had

a relatively imbalanced proportion as can be seen in

Table 3. It is, therefore, the effect of TomekLinks on

models’ performance was lesser compared to two other

undersampling techniques (i.e. RUS and NearMiss).

NearMiss, interestingly, provides a positive effect in

our experiment. The resampling process of the

NearMiss technique was carried out by identifying and

removing several samples from the majority class that

are close to a set of samples from the minority class

[23]. Reducing samples from the majority class will

help the model focus on the most relevant and important

samples in recognizing and predicting the minority

class [24]. However, although not as strong as RUS,

NearMiss also risks eliminating samples that may

contain valuable information for the training process.

By considering this mechanism, it is only a

consequence that NearMiss eventually provided

a stronger positive effect than RUS.

Among other types of resampling techniques, our

experiment showed that both ensemble techniques had

almost no effect on the models’ performance since they

did not add the size of the dataset nor change the class

proportion as can be observed in Table 3. The

resampling process of the EasyEnsemble technique was

carried out by dividing the imbalanced dataset into

several balanced subsets, and then training the model on

each subset [25]. Each training process on these subsets

will provide predictions on the test data and all of the

prediction results will be combined using a voting or

averaging mechanism to produce the final prediction.

With this kind of mechanism, the training process was

actually only dependent on several smaller balanced

datasets. However, the mechanism to split the original

dataset into a number of subsets might not yield as

appropriate proportion as those datasets resampled with

undersampling techniques.

A quite similar context is applied to the RUSBoost

technique. The resampling process of the RUSBoost

technique was carried out by combining the RUS with

the Boosting technique in order to improve the model's

performance in recognizing the minority class [26].

Initially, samples from the majority class are reduced

using the undersampling technique. The dataset is then

divided into several balanced subsets and training is

performed on each subset. Each training process assigns

weights (which may be different) to each sample. Each

training process on these subsets will provide

predictions on the test data and all of the prediction

results will be combined using a voting or averaging

mechanism to produce the final prediction [25]. The

effect of the RUSBoost technique on models’

performance was to some extent similar to

EasyEnsemble due to their relatively similar resampling

process mechanism.

Both combine resampling techniques, i.e. SMOTEENN

and SMOTETomek, provide a relatively positive effect

on the models’ performance in our experiment. This

positive effect was mostly perhaps due to taking the

benefit of the advantage of applying an oversampling

approach as part of these techniques. The resampling

process of the SMOTEENN technique was carried out

by oversampling the minority class using SMOTE, then

followed by undersampling the majority class using

ENN to eliminate samples that have the potential to

cause confusion or errors in classification by removing

samples from the majority class where most of its k

closest samples (k = 3) belong to the minority class [27].

Meanwhile, the resampling process of the

SMOTETomek technique was carried out by

oversampling the minority class using SMOTE, then

followed by undersampling the majority class using

TomekLinks by randomly selecting samples from the

majority class and deleting those with paired closest

sample belonging to the minority class [22].

As evidenced in our result, oversampling techniques

were observed to have provided a sufficiently positive

effect on models’ performance. Since the combined

technique also applies an oversampling approach as

part of their mechanism, they also yielded relatively

similar positive effects as oversampling techniques.

 Author, Agung Fatwanto, Muh Nur Aslam, Rebbecah Ndugi, Muhammad Syafrudin

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 639

The result of our experiment confirmed the study as

reported in [9] where SMOTE provided a positive

impact on the performance of defect prediction models.

This result, however, is different from that of another

study as reported in [10] where RUS combined with LR

yielded the largest performance improvement of defect

prediction models. Nevertheless, as reported in [8],

RUS risks removing some instances that could provide

more important information for the construction of the

prediction models.

In summary, our experiment showed that

the oversampling-based and combined approach (which

part of its mechanism is oversampling), provided

a positive effect on models’ performance in predicting

defective modules based on the CM1 NASA PROMISE

dataset. On the other hand, ensemble-based resampling

techniques such as EasyEnsemble and RUSBoost did

not prove to provide a positive effect on models’

performance hence not suitable to be applied for

developing defective software module prediction

models. It is important to note, however, that this

finding was based on the CM1 NASA PROMISE

dataset hence it might have a potential bias to the

condition of a particular dataset.

RQ2: What type of classification algorithms would

provide better performance for predicting defective

software modules on CM1 NASA PROMISE data (as

the representation of a small yet imbalanced dataset)?

The result of our experiment on testing the classification

algorithms for predicting defective software modules

based on the CM1 NASA PROMISE dataset that was

performed twice, each of which using 5-fold cross-

validation and 70%: 30% holdout training, yielded

a sufficiently consistent pattern as represented in the

colour scale matrix depicted in Figure 3. As can be

observed in Figure 3, ensemble algorithms (i.e. RF and

XGB) and DT showed higher performance based on

most of the applied measurements compared to others.

For the case of traditional machine learning algorithms,

our experiment showed that DT achieved sufficiently

higher performance compared to their other peers. LR

also showed slightly higher performance than SVM,

kNN, and NB. LR is an algorithm specifically designed

for binary (binomial) classification. This algorithm is

quite robust against the effects of small data noise and

is insignificantly affected by small multicollinearity

[28]. LR can also be used to perform binary

classification for high-dimensional data by testing its

regression coefficients. LR can effectively control the

error rate when testing data [29]. By considering this

context, it is reasonable that LR yielded fairly better

performance than some other algorithms experimented

in this study.

A. Performance from 5-Fold CV B. Performance from Holdout

Figure 2. Color Scale Matrix Comparing the Effect of Resampling

Techniques on Models’ Performance (Note: A: Without Resampling,

B: ROS, C: SMOTE, D: ADASYN, E: RUS, F: TOMEKLinks, G:

NearMiss, H: EasyEnsemble, I: RUSBoost, J: SMOTEENN, K:

SMOTETomek)

In a relatively similar context to LR, SVM is also an

algorithm specifically designed for binary (binomial)

classification. SVM trains the model and classifies data

based on their degree of polarity, by creating a

hyperplane that has the farthest distance between each

different class [23], [30]. SVM is able to handle

the multidimensional classification of complex data.

Our experiment, however, showed that SVM did not

achieve as high performance as LR. Small differences

in the degree of polarity within the dataset may explain

why this particular condition occurred.

kNN, which is also categorized as a traditional machine

learning algorithm, is basically a pattern recognition

algorithm that can be used to perform classification by

grouping data based on the class majority of the k

closest neighbors (we set k=5) [31]. Training the kNN

model using a small yet imbalanced dataset was rather

ineffective since its classification mechanism which

is based on the surrounding neighbors tends to detect

negative cases. When this model is trained on

 Author, Agung Fatwanto, Muh Nur Aslam, Rebbecah Ndugi, Muhammad Syafrudin

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 640

the resampled dataset, the classification tendency will

be more or less influenced by their proportion

characteristics. This condition is shown in Figure 3

where there are a number of relatively lighter colored

gradations on some applied resampling techniques for

the kNN area compared to others.

NB, as another traditional machine learning algorithm,

employs Bayes’ theorem to perform classification. NB

calculates the probability of each class and classifies the

data based on the one with the highest value [32]. In this

regard, NB is not as dependent as kNN on the

proportion characteristics of the datasets, as also

observed in Figure 3.

Compared to other traditional machine learning

algorithms, DT achieved the highest performance in our

experiment. DT is a classification algorithm that works

like a flow diagram. Data is classified into two (or

more) categories at each stage of the classification

process, from the "root", "stem", and "branch", to "leaf"

where the categories become increasingly similar. The

classification process starts from the “root” of the DT

and recursively progresses until it reaches the “leaf”

with the class label. At each node, a split condition is

applied to decide whether the input value should

proceed to the left or right subtree until it reaches the

leaf node [33]. The root node and each internal node

divide the training data into disjoint subsets so that the

search space can be significantly and efficiently pruned

when all sequences are used as potential features [34].

DT is widely used to create classification models

similar to human-like reasoning that are easy to

understand and easier to explain than other classifiers

including Artificial Neural Networks (ANN) and vector

machine classification [35]. The inherent feature

selection process implemented by DT was likely

to contribute positively to its better performance

compared to other traditional algorithms.

Ensemble type of models, i.e. RF and XGB, even

achieved slightly better performance compared to DT in

our experiment. RF is an algorithm that can be used for

classification and regression [36]. This algorithm is a

development of DT. RF is a type of bagging ensemble

algorithm consisting of several decision trees. Each

decision tree is trained with a dataset using the bootstrap

aggregation (bagging) process. The training process of

a DT uses the classification and regression tree (CART)

algorithm. For classification, each node of the DT is

designed to minimize impurity. The final decision of the

random forest is made by voting on the classification of

all DTs [37]. This mechanism explains why RF

achieved slightly better performance than DT.

XGB, as another ensemble algorithm, is also a

development of DT. It employs gradient-boosted DT

and applies a generation community learning approach

as a mechanism to improve performance by preventing

overfitting in the training process [13]. Having this kind

of mechanism made XGB yield comparatively similar

performance to RF and DT. Since XGB (and also RF)

are developed based on DT, they were likely also

gaining performance improvement benefits from the

inherently implemented feature selection process of

DT.

As for the neural network type of algorithm, in this case,

MLP, it achieved unsatisfactory performance in our

experiment. This condition is reflected in the color scale

matrix as depicted in Figure 2 where the area for MLP

is significantly darker meaning that MLP’s

performance was relatively lower compared to others.

MLP is a type of feedforward neural network

architecture that consists of at least three layers and is

connected to a non-linear activation function. As an

extension to the single-layer perceptron (which can only

distinguish linearly separated data), MLP is able to

distinguish data that cannot be separated linearly [38].

This type of model, however, normally requires a large

size of the dataset to achieve sufficiently good

performance [39]. It is hence not suitable to be applied

as a defective software modules predictor based on

a small yet imbalanced dataset such as in the context of

this study.

A limitation of our study is that we used the CM1

dataset which contains highly correlated features

particularly those derived from Halstead’s metrics or

other complexity measures. Highly correlated features

can impact the effectiveness of oversampling and

undersampling techniques by reducing diversity,

increasing redundancy, and affecting the balance of the

feature space. Since the intention of our research design

was to provide as natural software defect prediction

model construction process description as possible, we

used the original CM1 dataset instead of pre-processing

it to reduce its dimension. In real practices, however,

highly correlated features can be managed using

dimensionality reduction techniques or feature selection

methods to reduce redundancy and improve model

efficiency when needed.

In summary, our experiment showed that ensemble

algorithms that extend the DT classification mechanism

such as RF and XGB, achieved sufficiently good

performance for predicting defective software modules

based on the CM1 NASA PROMISE dataset. DT, as the

foundational platform of these two ensemble

algorithms, also achieved relatively good performance.

On the other hand, MLP apparently not suitable for this

type of task. Similar to the result of the experimented

resampling techniques, it is important to note that this

finding was based on the CM1 NASA PROMISE

dataset hence it might have a potential bias to the

condition as of the particular dataset.

RQ3: What type of evaluation measurements (metrics)

are deemed suitable for assessing the performance of

software defect prediction models on CM1 NASA

PROMISE data (as the representation of a small yet

imbalanced dataset)?

Our study employs 16 different measurements (metrics)

each representing one out of three types of

 Author, Agung Fatwanto, Muh Nur Aslam, Rebbecah Ndugi, Muhammad Syafrudin

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 641

measurement, namely single, combined, and rank

performance measures. The reasons behind the use of

these various different measurements were twofold.

First, we plan to get a more comprehensive evaluation

of the experimented variables in our study (i.e. the

effect of various different resampling techniques and

the performance of a number of classification

algorithms). Second, we intend to get an insight into

what type of measurement could provide a more

descriptive assessment for the case of classification

performance on defective software modules based on

small yet imbalanced datasets.

In order to elaborately analyze these metrics, we

calculate both the population and sample variance to the

collected models’ performance data on each measure

(metric). Table 7 summarizes the calculated variance

value of each measure.

The higher variance value means that the measures

(metrics) could provide a more sensitive capability in

detecting smaller differences in models’ performance

rates. Measurements (metrics) having higher variance

values, hence, could offer a more detailed description of

models’ performance.

For single performance measures, accuracy is normally

the most frequently reported value for classification

tasks. However, in the case of imbalanced datasets, the

predictive value of accuracy can be misleading for the

evaluation process [40]. It is evidenced in our

experiment where accuracy has the lowest values on

both population and sample variance compared to other

measures (metrics). This is mainly because accuracy

places more weight on the majority than the minority

class (by placing true negative as the dividend in the

formula) in calculating models’ performance. As for

precision and sensitivity, both resulted in modest

variance values. It is basically due to the relatively equal

weight placed on the majority and minority classes by

both measures (metrics) in calculating models’

performance. In a quite similar context to accuracy,

specificity has the second lowest variance values among

all measures (metrics). Since it also places more weight

on the majority class in calculating the performance, it

suffers low variance in accuracy when used to assess

models’ performance based on imbalanced datasets.

Figure 2 and Figure 3 clearly show that the gradation

range of accuracy and specificity is not as refined as in

other measures on the colour scale matrix. Meanwhile,

most of the combined performance measures have

relatively modest variance values in our experiment.

The explanation for this condition is that all combined

performance measures place relatively equal weight on

calculating the models’ performance by way of

combining single performance measures in their

formulas. By combining the single performance

measures to their calculating formulas, the combined

performance measures more or less have placed equal

weight on both majority and minority classes in

calculating models’ performance. Most of them

eventually yielded relatively modest variance values in

our experiment. A different condition occurred to the

positive and negative Likelihood scores which resulted

in very high variance values. It is mainly because

likelihood scores have relatively longer-range values

due to their formulas.

A. Performance from 5-Fold CV B. Performance from Holdout

Figure 3. Colour Scale Matrix Comparing the Performance of Eight

Different Classification Algorithms (Note: 1: LR, 2: SVM, 3: kNN,

4: NB, 5: DT, 6: RF, 7: XGB, 8: MLP)

Table 7. Variance from the 16 Measurement (Metric)

No. Measure 5-Fold Holdout

Var.P Var.S Var.P Var.S

1 Accuracy 0,0171 0,0181 0,0161 0,0161

2 Precision 0,086 0,087 0,109 0,111

3 Sensitivity 0,121 0,122 0,148 0,15

4 Specificity 0,022 0,022 0,0222 0,0222

5 F-Measure 0,09 0,091 0,079 0,08

6 AGF 0,089 0,09 0,077 0,078

7 Blcd. Accry. 0,0273 0,0273 0,0283 0,0283

8 Youden’s Id 0,107 0,108 0,111 0,113

9 + Likelhd 20,001 20,261 14,381 14,581

10 - Likelhd 0,1343 0,1353 0,1543 0,1563

11 MCC 0,102 0,103 0,11 0,111

12 Chn. Kappa 0,105 0,106 0,111 0,113

13 G-mean 0,082 0,083 0,121 0,123

14 DP 0,092 0,094 0,063 0,064

15 ROC/AUC 0,035 0,035 0,041 0,042

16 Lift Chart 0,3762 0,382 0,5132 0,5192

Note:

1, 2, 3: Rank Order

Red-Colored No.: High Value; Blue-Colored No.: Low Value

 Author, Agung Fatwanto, Muh Nur Aslam, Rebbecah Ndugi, Muhammad Syafrudin

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 642

As for the rank performance measure, in this case is

ROC/AUC and Lift Chart, they yielded relatively high

variance values on our experiment with Lift even

having the second highest values on the chart. Again, it

is due to the equally placed weight on both majority and

minority classes in calculating the models’

performance.

In summary, based on our experiment, both combined

and rank-based performance measures (metrics) are

deemed suitable for evaluating the models’

performance for predicting defective software modules

based on the CM1 NASA PROMISE dataset. On the

other hand, single performance measures, especially

accuracy and specificity are not a good candidate for

measuring this type of task. It is also important to note

that if the dataset is imbalanced (with a majority of non-

defective instances), specificity should be strongly

considered as a metric since it puts more penalty on

false positives measure.

4. Conclusions

Our study came up with three conclusions. First, some

types of resampling techniques, especially

oversampling and combined approaches, provide

sufficiently positive effects on models’ performance for

predicting defective software modules. One

undersampling technique, i.e. NearMiss, also

potentially provides a positive effect on models’

performance. Contrarily, ensemble-based resampling

techniques did not show any positive effect on models’

performance hence not suitable for this context. Second,

ensemble-based algorithms which extend the DT

classification mechanism such as RF and XGB,

achieved sufficiently good performance for predicting

defective software modules. DT, as the foundational

platform of these two ensemble algorithms, also

achieved relatively good performance. On the other

hand, MLP apparently came with disappointing

performance for this context. Third, combined and

rank-based performance measures (metrics) are deemed

suitable for evaluating the models’ performance for

predicting defective software modules. On the contrary,

single performance measures, especially accuracy and

specificity are not a reliable measure for this context.

These three conclusions drawn from our study however

cannot be generalized to other contexts since we only

employed CM1 NASA PROMISE dataset. We suggest

extending this research using more datasets to obtain

more statistically trustworthy results and completing

the experimented algorithms with a representation of

stack-based ensemble in addition to bagging and

boosting-based ensemble algorithms that have been

tried in this study.

Acknowledgements

The author would like to thank UIN Sunan Kalijaga

Yogyakarta for supporting of this study.

References

[1] Ö. F. Arar and K. Ayan, “Software defect prediction using

cost-sensitive neural network,” Appl. Soft Comput. J., vol. 33,

pp. 263–277, 2015, doi: 10.1016/j.asoc.2015.04.045.

https://doi.org/10.29207/resti.v4i5.2391.

[2] H. Alsawalqah, H. Faris, I. A. B, and L. Alnemer, “Hybrid

SMOTE-Ensemble Approach,” Adv. Intell. Syst. Comput., vol.

1, 2017, doi: 10.1007/978-3-319-57141-6.

[3] L. Qiao, X. Li, Q. Umer, and P. Guo, “Deep learning based

software defect prediction,” Neurocomputing, vol. 385, pp.

100–110, 2020, doi: 10.1016/j.neucom.2019.11.067.

[4] R. B. Bahaweres, K. Zawawi, D. Khairani, and N. Hakiem,

“Analysis of statement branch and loop coverage in software

testing with genetic algorithm,” Int. Conf. Electr. Eng. Comput.

Sci. Informatics, vol. 2017-Decem, no. September, pp. 19–21,

2017, doi: 10.1109/EECSI.2017.8239088.

[5] F. Matloob et al., “Software Defect Prediction Using Ensemble

Learning : A Systematic Literature Review,” IEEE Access, vol.

9, no. October, pp. 98754–98771, 2021, doi:

10.1109/ACCESS.2021.3095559.

[6] M. N. M. Rahman, R. A. Nugroho, M. R. Faisal, F. Abadi, and

R. Herteno, “Optimized multi correlation-based feature

selection in software defect prediction,” TELKOMNIKA

Telecommun Comput El Control J., vol. 98, no. 3, pp. 598-605,

2024, doi:

https://doi.org/10.12928/TELKOMNIKA.v22i3.25793.

[7] U. S. Bhutamapuram and R. Sadam, “With-in-project defect

prediction using bootstrap aggregation based diverse ensemble

learning technique,” J. of King Saud University - Computer and

Information Sciences., p. 4832864, 15 pages 2021,

https://doi.org/10.1155/2021/4832864.S.

[8] S. Feng, J. Keung, Y. Xiao, P. Zhang, X. Yu and X. Cao,

“Improving the undersampling technique by optimizing the

termination condition for software defect prediction,” Expert

Sys. with App., vol. 235, p. 121084, 2024,

https://doi.org/10.1016/j.eswa.2023.121084.

[9] A. Saifudin, S. W. H. L. Hendric, B. Soewito, F. L. Gaol, E.

Abdurachman, and Y. Heryadi, “Tackling Imbalanced Class on

Cross-Project Defect Prediction Using Ensemble SMOTE,”

IOP Conf. Ser. Mater. Sci. Eng., vol. 662, no. 6, pp. 0–10,

2019, doi: 10.1088/1757-899X/662/6/062011.

[10] C. Tantithamthavorn, A. E. Hassan and K. Matsumoto, "The

Impact of Class Rebalancing Techniques on the Performance

and Interpretation of Defect Prediction Models," IEEE

Transactions on Software Engineering, vol. 46, no. 11, pp.

1200-1219, 1 Nov. 2020, doi: 10.1109/TSE.2018.2876537.

[11] Anna, “Penerapan k-nearest neighbor menggunakan

pendekatan random walk over-sampling menangani

ketidakseimbangan kelas pada prediksi cacat software,”

Master Thesis, STMIK Nusa Mandiri, 2018, [Online].

Available:

https://repository.bsi.ac.id/repo/files/354032/download/Full-

Tesis-Anna.pdf.

[12] M. Sonhaji Akbar and S. Rochimah, “Prediksi Cacat Perangkat

Lunak Dengan Optimasi Naive Bayes Menggunakan

Pemilihan Fitur Gain Ratio,” J. Sist. Dan Inform., vol. 11, no.

1, pp. 147–155, 2018.

[13] S. K. Pemmada, J. Nayak, H. S. Behera, and D. Pelusi, “Light

Gradient Boosting Machine in Software Defect Prediction:

Concurrent Feature Selection and Hyper Parameter Tuning,” in

Intelligent Sustainable Systems, J. S. Raj, Y. Shi, D. Pelusi, and

V. E. Balas, Eds., Singapore: Springer Nature Singapore, 2022,

pp. 427–442.

[14] A. Alazba and H. Aljamaan, “Software Defect Prediction

Using Stacking Generalization of Optimized Tree-Based

Ensembles,” Appl. Sci., vol. 12, no. 9, 2022, doi:

10.3390/app12094577.

[15] Y. Al-Smadi, M. Eshtay, A. Al-Qerem, S. Nashwan, O. Ouda,

and A. A. Abd El-Aziz, “Reliable prediction of software

defects using Shapley interpretable machine learning models,”

Egypt. Informatics J., vol. 24, no. 3, p. 100386, 2023,doi:

https://doi.org/10.1016/j.eij.2023.05.011.

[16] M. Shepperd, Q. Song, Z. Sun, and C. Mair, “Data quality:

Some comments on the nasa software defect datasets,” IEEE

 Author, Agung Fatwanto, Muh Nur Aslam, Rebbecah Ndugi, Muhammad Syafrudin

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 8 No. 5 (2024)

This is an open access article under the CC BY-4.0 license 643

Trans. On Soft. Eng., vol. 39, no. 9, pp. 1208–1215, 2013, doi:

10.1109/TSE.2013.11.

[17] S. Raschka, “Model Evaluation, Model Selection, and

Algorithm Selection in Machine Learning,” arXiv,

primaryClass={cs.LG}, eprint 1811.12808, 2012,

url=https://arxiv.org/abs/1811.12808.

[18] Q. H. Nguyen, H-B. Ly, L. S. Ho, N. Al-Ansari, H. V. Le, V.

Q. Tran, I. Prakash and B. T. Pham, “Influence of Data

Splitting on Performance of Machine Learning Models in

Prediction of Shear Strength of Soil,” Math. Problems in Eng.,

vol. 29, issue. 4, pp. 565-570, 2019, doi: 10.1145/3459665.

[19] C. Yang, E. A. Fridgeirsson, J. A. Kors, J. M Reps and P. R.

Rijnbeek, “Impact of random oversampling and random

undersampling on the performance of prediction models

developed using observational health data,” J. of Big Data.,

vol. 11, no. 7, pp. 2196-1115, 2024,

https://doi.org/10.1186/s40537-023-00857-7.

[20] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.

Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling

Technique,” J. Artif. Intell. Res., vol. 16, no. Sept. 28, pp. 321–

357, 2002,

https://arxiv.org/pdf/1106.1813.pdf%0Ahttp://www.snopes.co

m/horrors/insects/telamonia.asp.

[21] H. He, Y. Bai, E. A. Garcia and S. Li, "ADASYN: Adaptive

synthetic sampling approach for imbalanced learning," 2008

IEEE International Joint Conference on Neural Networks

(IEEE World Congress on Computational Intelligence), Hong

Kong, 2008, pp. 1322-1328, doi:

10.1109/IJCNN.2008.4633969.

[22] T. Sasada, Z. Liu, T. Baba, K. Hatano and Y. Kimura, " A

Resampling Method for Imbalanced Datasets Considering

Noise and Overlap," Procedia Computer Science (24 Int. Conf.

on Knowledge-based & Intelligent Information & Engineering

System), vol. 176, 2020, pp. 420-429, doi:

10.1016/j.procs.2020.08.043.

[23] Y. Tang, Y. Q. Zhang, and N. V. Chawla, “SVMs modeling for

highly imbalanced classification,” IEEE Trans. Syst. Man,

Cybern. Part B Cybern., vol. 39, no. 1, pp. 281–288, 2009, doi:

10.1109/TSMCB.2008.2002909.

[24] F. Wang et al., “Imbalanced data classification algorithm with

support vector machine kernel extensions,” Evol. Intell., vol.

12, no. 3, pp. 341–347, 2019, doi: 10.1007/s12065-018-0182-

0.

[25] P. Mooijman, C. Catal, B. Tekinerdogan, A. Lommen, and M.

Blokland, “The effects of data balancing approaches: A case

study,” Appl. Soft Comput., vol. 132, p. 109853, 2023, doi:

10.1016/j.asoc.2022.109853.

[26] W. Zheng et al., “Machine learning for imbalanced datasets:

Application in prediction of 3d-5d double perovskite

structures,” Comput. Mater. Sci., vol. 209, no. March, 2022,

doi: 10.1016/j.commatsci.2022.111394.

[27] M. Xing et al., “Predict DLBCL patients’ recurrence within

two years with Gaussian mixture model cluster oversampling

and multi-kernel learning,” Comput. Methods Programs

Biomed., vol. 226, p. 107103, 2022, doi:

10.1016/j.cmpb.2022.107103

[28] J. Bakerman, K. Pazdernik, G. Korkmaz, and A. G. Wilson,

“Dynamic logistic regression and variable selection:

Forecasting and contextualizing civil unrest,” Int. J. Forecast.,

vol. 38, no. 2, pp. 648–661, 2022, doi:

10.1016/j.ijforecast.2021.07.003.

[29] M. Fang and D. T. N. Huy, “Building a cross-border e-

commerce talent training platform based on logistic regression

model,” J. High Technol. Manag. Res., vol. 34, no. 2, p.

100473, 2023, doi: 10.1016/j.hitech.2023.100473.

[30] Y. Zhang, “Support Vector Machine Classification Algorithm

and Its Application,” Information Computing and Applications

(ICICA 2012. Communications in Computer and Information

Science), vol. 308, part II, pp. 179–186, 2012, Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-34041-3_27.

[31] P. Cunningham and S. J. Delany, “k-Nearest Neighbour

Classifiers - A Tutorial,” ACM Computing Surveys., vol. 54,

no. 6, pp. 1–25, 2021, doi: 10.1145/3459665.

[32] Wickramasinghe and H. Kalutarage “Naive Bayes:

applications, variations and vulnerabilities: a review of

literature with code snippets for implementation”, Soft

Comput, vol. 25, pp. 2277–2293, 2021,

https://doi.org/10.1007/s00500-020-05297-6.

[33] S. Tangirala, “Evaluating the impact of GINI index and

information gain on classification using decision tree classifier

algorithm,” Int. J. Adv. Comput. Sci. Appl., vol. 11, no. 2, pp.

612–619, 2020, doi: 10.14569/ijacsa.2020.0110277.

[34] Z. He, Z. Wu, G. Xu, Y. Liu, and Q. Zou, “Decision Tree for

Sequences,” IEEE Trans. Knowl. Data Eng., vol. 35, no. 1, pp.

251–263, 2023, doi: 10.1109/TKDE.2021.3075023.

[35] F. Zou, “Research on data cleaning in big data environment,”

Proc. - 2022 Int. Conf. Cloud Comput. Big Data Internet

Things, 3CBIT 2022, pp. 145–148, 2022, doi:

10.1109/3CBIT57391.2022.00037.

[36] Z. Jin, J. Shang, Q. Zhu, C. Ling, W. Xie, and B. Qiang,

“RFRSF: Employee Turnover Prediction Based on Random

Forests and Survival Analysis,” Lect. Notes Comput. Sci.

(including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 12343 LNCS, pp. 503–515, 2020, doi:

10.1007/978-3-030-62008-0_35.

[37] J. Lee et al., “Data-driven disruption prediction using random

forest in KSTAR,” Fusion Eng. Des., vol. 199, no. December

2023, p. 114128, 2024, doi: 10.1016/j.fusengdes.2023.114128.

[38] J. Singh and R. Banerjee, "A Study on Single and Multi-layer

Perceptron Neural Network," 2019 3rd International

Conference on Computing Methodologies and Communication

(ICCMC), Erode, India, 2019, pp. 35-40,

https://doi.org/10.1016/j.ijmst.2019.06.009.

[39] Y. Pu, D. B. Apel, V. Liu and H. Mitri, “Machine learning

methods for rockburst prediction-state-of-the-art review,” Int.

J. of Mining Sci. and Tech., vol. 29, issue. 4, pp. 565-570, 2019,

doi: 10.1145/3459665.

[40] J. S. Akosa, “Predictive Accuracy: A Misleading Performance

Measure for Highly Imbalanced Data,” in Proceeding, 2017,

https://api.semanticscholar.org/CorpusID:43504747.

