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Abstract  

Software defect prediction is a practical approach to improving the quality and efficiency of software testing processes. 

However, establishing robust and trustworthy models for software defect prediction is quite challenging due to the limitation 

of historical datasets that most developers are capable of collecting. The inherently imbalanced nature of most software defect 

datasets also posed another problem. Therefore, an insight into how to properly construct software defect prediction models 

on a small, yet imbalanced, dataset is required. The objective of this study is therefore to provide the required insight by way 

of investigating and comparing a number of resampling techniques, classification algorithms, and evaluation measurements 

(metrics) for building software defect prediction models on CM1 NASA PROMISE data as the representation of a small yet 

unbalanced dataset. This study is comparative descriptive research. It follows a positivist (quantitative) approach. Data were 

collected through observation towards experiments on four categories of resampling techniques (oversampling, under 

sampling, ensemble, and combine) combined with three categories of machine learning classification algorithms (traditional, 

ensemble, and neural network) to predict defective software modules on CM1 NASA PROMISE dataset. Training processes 

were carried out twice, each of which used the 5-fold cross-validation and the 70% training and 30% testing data splitting 

(holdout) method. Our result shows that the combined and oversampling techniques provide a positive effect on the 

performance of the models. In the context of classification models, ensemble-based algorithms, which extend the decision tree 

classification mechanism such as Random Forest and eXtreme Gradient Boosting, achieved sufficiently good performance for 

predicting defective software modules. Regarding the evaluation measurements, the combined and rank-based performance 

metrics yielded modest variance values, which is deemed suitable for evaluating the performance of the models in this context. 
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1. Introduction  

The need for new software system applications is 

rapidly increasing to meet the never-ending user 

demand. The newly demanded software system 

applications are also becoming increasingly more 

complex and complicated. This condition obviously has 

an impact on raising the required time and cost of 

software development due to the need for a 

comprehensive testing process. 

Arar and Ayan, in their study, found that 23% of 

software development costs are spent on quality 

assurance and software testing alone [1]. One effort that 

can be made to reduce the time and cost of software 

testing is by way of predicting potential defects in 

software modules [2]. Machine learning algorithms can 

be utilized to develop these predicting models. 

Predicting defective modules helps software developers 

allocate resources more efficiently by focusing on 

https://doi.org/10.29207/resti.v8i5.5910
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modules likely to contain defects [3]. The main purpose 

of predicting defects within software modules is to 

determine which modules will be prioritized for further 

in-depth testing, either manually or automatically [4]. 

The method for finding defective/faulty software 

modules is known as Software Defect Prediction (SDP). 

On some occasions, it is also known as Software Fault 

Prediction (SFP). SDP/SFP is employed to assist in 

identifying potential defective/faulty software modules 

and calculating the number of potential defects on 

components/modules of the system being developed 

[5]. Predicting the number of potential errors can 

provide better insight into how much effort and 

resources are required to eliminate errors from software 

modules. 

SDP/SFP have been and still attract a lot of researchers 

to study this particular topic such as reported in [6], [7]. 

A number of studies on SDP/SFP especially regarding 

the use of resampling techniques to handle imbalanced 

datasets have been conducted previously. A study as 

reported in [8], describes the application of 

undersampling techniques to minority classes (in this 

case the defective software module class) to resample 

the imbalanced dataset on software defects prediction. 

A study as reported in [9] employed SMOTE to handle 

imbalanced datasets in order to improve the 

classification performance. Another study on the impact 

of rebalancing techniques on the performance of defect 

prediction models is reported in [10]. 

Studies on the application of machine learning-based 

classification processes for SDP/SFP have also been 

conducted by several researchers. One study discusses 

the application of the kNN algorithm combined with the 

Random Walk Over Sampling technique to handle class 

imbalance for predicting defective software modules 

[11]. In addition, there is another study that discusses 

the optimization of Naïve Bayes using Gain Ratio to 

improve the accuracy of defective software module 

prediction [12]. 

A series of studies on the use of the boosting and 

stacking-based algorithm for SDP/SFP have also been 

conducted. In these studies, it was reported that this 

ensemble algorithm provides sufficiently good 

prediction results [13], [14], [15]. 

Nevertheless, as far as our exploration is concerned, 

there is still no study which covers a comprehensive 

investigation of the effect of resampling techniques and 

classification algorithms performance on small yet 

imbalanced datasets that are normally found in software 

defects data. As an effort to provide a relatively 

comprehensive picture, this study experimented with 

ten resampling techniques which represent four types of 

resampling categories, namely oversampling, 

undersampling, ensemble, and combination; combined 

with the use of eight classification algorithms which 

represent three types of classification algorithm 

categories, namely traditional, ensemble, and neural 

network. The result will then be evaluated for their 

performance using a set of measures which consist of 

single, combined, and rank performance measures. 

As for the framework of our research, we put forward 

three research questions as follows: 

RQ1: What type of resampling techniques would 

provide a potentially positive effect on the performance 

of the software defects prediction model on CM1 NASA 

PROMISE data (as the representation of a small yet 

imbalanced dataset)? 

RQ2: What type of classification algorithms would 

provide better performance for predicting defective 

software modules on CM1 NASA PROMISE data (as 

the representation of a small yet imbalanced dataset)? 

RQ3: What type of evaluation measurements (metrics) 

are deemed suitable for assessing the performance of 

software defect prediction models on CM1 NASA 

PROMISE data (as the representation of a small yet 

imbalanced dataset)? 

The output of this study is expected to provide 

comprehensive insight into the effect of using particular 

resampling techniques and machine learning 

classification algorithms on software defect prediction. 

This insight is especially of interest for software 

developers which can act as their guideline for 

developing software defect prediction models. 

2. Research Methods 

This study is descriptive comparative research. It 

follows an empirical quantitative approach.  Data were 

collected through observations towards experiments on 

resampling techniques and classification algorithms. 

The obtained classification results were then used to 

measure the models’ performance. The flow of our 

research is depicted in Figure 1. 

The research began with the data collection process. It 

was then followed by the experimental stage. We 

conducted our experiment on Google Colab. We 

employed Python 3.10.12 and used a number of 

libraries such as imblearn 0.10.1 for resampling, sklearn 

1.2.2 for classification (LogisticRegression, SVC, 

KNeighbors, GaussianNB, DecisionTree, 

RandomForest, and MLP), and xgboost 2.0.3 for XGB 

classifier. 

The experimental stage started with data preprocessing, 

in which the imbalanced dataset was resampled using 

ten techniques representing four types of resampling 

categories, namely UnderSampling, OverSampling, 

EnsembleSampling and CombineSampling. The new 

resampled datasets were then used as the material for 

training, validation, and testing processes of eight 

classification algorithms representing three types of 

machine learning categories, namely traditional, 

ensemble, and neural network models. 

The training, validation, and testing processes were 

carried out twice, firstly using the 5-fold cross-

validation and secondly using the holdout method (70% 
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training, 30% testing). The results of the testing process 

are then evaluated using 15 measurements (metrics) 

representing three types of performance measurement 

categories, namely single, combined, and rank 

performance measurements. The values of these 

measurements are then used as the basis for performing 

a descriptive comparative analysis towards the effect of 

resampling techniques and classification algorithms 

performance.

 

Figure 1. Research Method 

2.1 Data Collection 

This study used a software defect prediction dataset 

from the NASA PROMISE Software Engineering 

Database. This is a public dataset and can be obtained 

from the following link: 

http://promise.site.uottawa.ca/SERepository/datasets-

page.html or 

https://github.com/ApoorvaKrisna/NASA-promise-

dataset-repository. Compared to those from the NASA 

Metrics Data Program (MDP), all software defect 

prediction datasets from PROMISE have fewer 

variables (features) [16]. These datasets are hence 

deemed more suitable to be chosen for this type of study 

since fewer variables are easier and cheaper to collect 

hence would be obviously in favour of developers and 

relatively feasible to be practised on typical software 

development projects.  

Out of 13 software defect prediction datasets from the 

NASA PROMISE Software Engineering Database, 

there are five datasets which contain the fewest 

variables, namely: CM1, JM1, KC1, KC2, and PC1. 

This study specifically used the CM1 dataset mainly 

because CM1 bears the characteristics that best 

represent the common problematic condition faced by 

most developers in collecting software defect datasets 

on typical projects. The size of most software systems 

found on typical medium-sized business projects are 

around hundreds of modules. It is categorized as small 

in the context of the size of the machine learning 

dataset. Yet, most software defect datasets are 

inherently imbalanced where positive cases (the 

occurrence of defects in modules) are way too small. 

Compared to other software defect datasets in 

the NASA PROMISE Software Engineering Database, 

CM1 best represents both characteristics. It has the 

smallest amount of data and also has the most extreme 

proportion of class imbalance between defective and 

non-defective classes (or having the most extreme 

defect rate). We also considered not combining CM1 

with some other datasets to train the models in our 

experiment since they were collected from different 

projects which were potentially having different 

characteristics. An overview of the software defect 

prediction dataset from the NASA PROMISE Software 

Engineering Database is shown in Table 1. 

Table 1. The NASA PROMISE software defect prediction datasets 

No Nane # of 

Var 

# of 

Data 

[+ ; -] % of 

Defects  

1 CM1 22 498 [49 ; 449] 9.83% 

2 JM1 22 10,885 [8779 ; 2106] 80.65% 

3 KC1 22 2,109 [326 ; 1783] 15.45% 

4 KC2 22 522 [107 ; 415] 20.5% 

5 PC1 22 1,109 [1032 ; 77] 93.05% 

http://promise.site.uottawa.ca/SERepository/datasets-page.html
http://promise.site.uottawa.ca/SERepository/datasets-page.html
https://github.com/ApoorvaKrisna/NASA-promise-dataset-repository
https://github.com/ApoorvaKrisna/NASA-promise-dataset-repository
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Software Defect Prediction dataset from the NASA 

PROMISE Software Engineering Database has a total 

of 22 variables data. It consists of 21 independent 

variables and one dependent variable data. The 

independent variables data are in the form of 

quantitative measurements of the program source code. 

Four variables’ data are measurements based on 

McCabe's theory, 11 variables data are measures based 

on Halstead's theory, and the other six variables’ data 

are additional measurements. The dependent variable is 

the defect classification label in binary form. All 

independent variables have numeric data types (interval 

& ratio), while the independent variables have binary 

(binomial) data types (i.e. true = defect or false = not 

defect). The explanation of each variable in the dataset 

used for this study is shown in Table 2. 

Table 2. List of variables in CM1 dataset 

No. Variable Base Type 

1 Line of Code McCabe Numeric 

2 Cyclomatic Complexity McCabe Numeric 

3 Essential Complexity McCabe Numeric 

4 Design Complexity McCabe Numeric 

5 Halstead Operator and Operand Halstead Numeric 

6 Halstead Volume Halstead Numeric 

7 Halstead Program Length Halstead Numeric 

8 Halstead Difficulty Halstead Numeric 

9 Halstead Intelligence Halstead Numeric 

10 Halstead Effort Halstead Numeric 

11 Halstead Delivered Bug Halstead Numeric 

12 Halstead Time Estimator Halstead Numeric 

13 Halstead Line Count Halstead Numeric 

14 Halstead Comments Count Halstead Numeric 

15 Halstead Blank Line Count Halstead Numeric 

16 Line of Code and Comments Misc. Numeric 

17 Unique Operators Misc. Numeric 

18 Unique Operands Misc. Numeric 

19 Total Operators Misc. Numeric 

20 Total Operands Misc. Numeric 

21 Branch Count Misc. Numeric 

22 Defects Misc. Boolean 

2.2 Preprocessing 

Prior to performing the experiment, first, the raw 

dataset will normally go through pre-processing 

activities. During pre-processing, several treatments 

will generally be carried out to the raw dataset, 

including i) a data cleaning process to find empty and 

inconsistent data items, ii) a data transformation 

(normalization) process to standardize the whole data so 

that they will have the same basis unit in order to make 

the data analysis process become feasible to perform, 

iii) resampling process to balance the proportion of 

class distribution, especially for the imbalanced dataset. 

After the data is deemed sufficient to be used as the 

material for training the model, it is continued to the 

experimental stage. Specifically in this study, the only 

preprocessing activity performed was the resampling 

process. 

One of the main activities of this study was to 

investigate the effect of using several resampling 

techniques on small yet imbalanced datasets for 

predicting defective software modules. The resampling 

techniques experimented in this research represent four 

categories, namely oversampling, undersampling, 

ensemble, and combination. The experimented 

resampling techniques include RandomOverSampling 

(ROS), Synthetic Minority Oversampling Technique 

(SMOTE), and Adaptive Synthetic Sampling Approach 

(ADASYN) three of which represent the oversampling 

technique category; RandomUnderSampling (RUS), 

TomekLinks, and NearMiss in which three of them 

represent the undersampling technique category; 

EasyEnsemble and RUSBoost in which both represent 

ensemble technique category; and Synthetic Minority 

Oversampling Technique Edited Nearest Neighbors 

(SMOTEENN) and SMOTETomek in which both 

represent combination techniques category. 

2.3 Training and Classification 

In addition to investigating the effect of several 

resampling techniques on small yet imbalanced 

datasets, this study also investigated the performance of 

several machine learning classification algorithms, 

especially for predicting defective software modules. 

The experiment of eight algorithms for predicting 

defective software modules was carried out twice. The 

first experiment applies a k-fold cross-validation 

strategy (with k=5), and the second experiment applies 

a dataset-splitting strategy with a proportion of 70% for 

training and 30% for testing. Our reason why choosing 

k=5 for the k-fold cross-validation and 70%: 30% 

proportion for the holdout strategy was following the 

study as reported in [17], and [18] respectively. In our 

experiment, we chose to leave the default 

hyperparameter arrangement as originally set by all 

employed libraries as is in order to provide an authentic 

description of each algorithm’s performance. 

There are eight classification algorithms experimented 

in this study, i.e. Logistic Regression (LR), Support 

Vector Machine (SVM), k-nearest Neighbors (kNN) 

with k=5, Naïve Bayes (NB), Decision Tree (DT), 

Random Forest (RF), ExtremeGradientBoosting 

(XGB), and Multi-Layer Perceptron (MLP). The first 

five algorithms represent the traditional machine 

learning algorithm category, RF and XGB represent the 

ensemble category, while the last algorithm represents 

the neural network category.  

2.4 Evaluation 

Evaluation of the effect of resampling techniques 

combined with classification algorithms was measured 

using three types of measurements. First, based on 

single performance measures, which consist of 

accuracy, precision, sensitivity (recall), and specificity. 

Second, based on a combination of performance 

measures, which consist of F-Measure (F1-Score), 

Adjusted F-Measure (AGF), balanced accuracy, 

Youden's Index, positive and negative likelihood, 

Matthew's Correlation Coefficient (MCC), Cohen's 

Kappa, geometric mean (G-mean), and discriminant 

power. Third, based on rank performance measures, 

which consist of Receiver Operating Characteristic 
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(ROC) Curve / Area Under the Curve (AUC) and lift 

charts.  

For single performance measures, accuracy is normally 

the most frequently reported value for classification 

tasks. Accuracy measures the overall classification 

correctness of a model. Precision measures model 

exactness in performing classification, while sensitivity 

(recall) measures the model’s effectiveness in 

classifying the minority class, by assessing the model's 

accuracy against positive cases. Meanwhile, specificity 

measures the model's effectiveness in classifying the 

majority class (negative), namely assessing the model's 

accuracy against negative cases. These single 

performance measures have values ranging from 0 to 1 

where the larger the values mean better classifier 

models. 

As for the combined measure, F-Measure (F1-Score) 

measures a harmonic mean of the precision and 

sensitivity. The F-Measure value shows the balance 

between precision and sensitivity. If either the precision 

or sensitivity value is 0, then the F-Measure is also 0. F-

Measure is a good indicator in cases of fairly balanced 

datasets. For cases of imbalanced datasets, AGF is a 

better alternative. AGF measures all raw elements of the 

confusion matrix and gives more weight to patterns that 

are correctly classified in the minority class (positive 

cases). High F-Measure and AGF values indicate that 

the model is a good classifier of the minority class 

(positive cases). Balanced accuracy is the average 

accuracy obtained from both positive and negative 

cases. It is the arithmetic mean of sensitivity and 

specificity. The balanced accuracy value is slightly 

lower than the (single measurement) accuracy value if 

the classification performance is equally good in 

positive and negative cases since it places same weight 

to both cases. However, the balanced accuracy value 

will sharply decrease compared to the (single 

measurement) accuracy value if the model’s high 

accuracy is benefited from the distribution of majority 

class in the dataset. Youden's Index measures the 

model's ability to avoid misclassification. This index 

places equal weight on the model's performance in both 

positive and negative cases. A high Youden's Index 

value indicates that the model is a good classifier. 

Likelihood is a ratio of the model's classification 

performance measurements. Positive likelihood 

measures the ratio of the model's probability of 

predicting true positive cases as positive with the 

probability of predicting true negative cases as positive. 

While negative likelihood measures the ratio of the 

model's probability of predicting true negative cases as 

positive with the probability of predicting true negative 

cases as negative. A high positive likelihood value 

indicates good model performance in positive cases, 

and conversely, a low negative likelihood value 

indicates good model performance in negative cases. 

MCC measures the correlation coefficient between the 

classification prediction results and the observed 

conditions. MCC is one of the measures that is least 

affected by imbalanced data. MCC values range from -

1 to +1. An MCC value of +1 indicates that the model 

is able to predict perfectly, a value of 0 indicates that 

the model's predictive ability is equal to random 

prediction, and a value of -1 indicates that the model has 

the worst predictive performance. Cohen's Kappa 

measures the degree of accuracy that is likely to occur 

purely by chance. Cohen's Kappa values also range 

from -1 to +1. A value of +1 indicates that there is a 

perfect match between the model's prediction and the 

actual class, a value of 0 indicates that there is no match 

between the model's prediction and the actual class, and 

a value of -1 indicates a complete mismatch between the 

model's prediction and the actual class. G-mean 

measures the balance between classification 

performance on positive and negative cases. This 

measure is very good to use as a guide to avoid 

overfitting in negative cases and underfitting in positive 

cases. A low G-mean value indicates poor performance 

in classifying positive cases even if the negative cases 

have been correctly classified. Discriminant power 

measures the combination of sensitivity and specificity. 

A discriminant power value above 3 indicates a good 

performing model, a value between 2-3 indicates fair 

performance, a value between 1-2 indicates limited 

performance, and a value less than 1 indicates a poor 

classifier. 

As for the rank performance measure, ROC measures 

the balance between sensitivity and specificity along a 

continuum using a curve. AUC is the area under the 

ROC curve. A ROC/AUC value of 1 indicates a good 

classifier, while a value of 0.5 indicates poor model 

performance. Lift charts are tools that can be used to 

measure model effectiveness by calculating the ratio 

between the outcomes obtained. Lift charts assess the 

model's ability to detect events of interest in the data. 

For example, if there are n events of interest in the data 

to be classified, a good model will be able to place a 

higher score for the n events than data the non-events 

data. A model with perfect performance will produce n 

events of interest as the n highest-rank data. A high lift 

chart value indicates good performance. 

3. Results and Discussions 

The experiment as has been conducted in this study had 

successfully produced a number of insightful data. 

Section 3.1 presents all gathered data from the 

experiment in detail. 

3.1 Results 

Our experiment started with resampling the original 

CM1 dataset from the NASA PROMISE database. The 

dataset which was originally consist of 49 positive and 

449 negative samples was resampled using ten different 

techniques. These resampling processes yielded various 

class proportions as presented in Table 3. 

Based on the data as presented in Table 3, it can be seen 

that oversampling techniques had doubled the dataset 

size. They did it by randomly duplicating the positive 
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samples (in the case of ROS) or creating synthetic new 

positive samples (in the case of SMOTE and 

ADASYN). 

Table 3. Class Proportion on Dataset after Resampling 

No

. 

Technique Positive 

(Defect) 

Negative 

(No Defect) 

Total 

1 Original Dataset 49 449 498 

2 ROS 449 449 898 

3 SMOTE 449 449 898 

4 ADASYN 465 449 914 

5 RUS 49 49 98 

6 Tomek Links 49 432 481 

7 NearMiss 49 49 98 

8 EasyEnsemble 49 449 498 

9 RUSBoost 49 449 498 

10 SMOTEENN 232 205 437 

11 SMOTETomek 400 400 800 

 

Meanwhile, two of the undersampling techniques 

sharply decreased the dataset size. RUS randomly 

deleted negative samples to balance with the size of the 

positive samples, while NearMiss deleted a lot of 

negative samples which have close proximity to the 

positive samples. As for Tomek Links, it deleted only 

a few negative samples that are paired (have the closest 

distance) with those from the positive class. 

Both ensemble techniques that were tried in our 

experiment did not change the size and proportion of the 

original dataset. It seemed because ensemble techniques 

basically only split the dataset into a number of 

balanced subsets and then train the models on each 

subset. They therefore did not either add or delete any 

samples in the dataset. 

As for the combined techniques, i.e. SMOTEENN and 

SMOTETomek, they yielded relatively balanced class 

proportions. The total size of the resampled datasets 

produced by these two techniques is however 

significantly different. In addition to adding synthetic 

positive samples, SMOTEENN deleted more negative 

samples than SMOTETomek. It mainly because 

SMOTEENN delete those whose most of their 

neighbors are from the positive cases while 

SMOTETomek only delete those whose pairs (closest 

neighbor) are from positive cases. 

Subsequently, after finishing with the resampling 

processes, our experiment was continued with training, 

validating, and testing eight different algorithms. This 

part of the process was performed twice. First, it was 

performed on a 5-fold cross validation session. Second, 

it was done on 70% : 30% holdout session. The 

performance of the experimented algorithms was then 

evaluated using 16 measurements (metrics). Table 4 

presents the result of the testing to the classification 

models. 

Table 4. Testing Result of the Classification Models 

R A 
5-Fold Holdout 

TP TN FP FN TP TN FP FN 

A 

1 1,2 87,8 2 8,6 0 87 1 12 

2 0 89,8 0 9,8 0 88 0 12 

3 0 88 1,8 9,8 0 88 0 12 

4 3,2 81,4 8,4 6,6 2 86 2 10 

R A 
5-Fold Holdout 

TP TN FP FN TP TN FP FN 

5 2,6 80,2 9,6 7,2 4 82 6 8 

6 0,4 88,6 1,2 9,4 0 87 1 12 

7 1,8 86 3,8 8 1 85 3 11 

8 1,4 77,2 12,6 8,4 0 88 0 12 

B 

1 67,2 71,4 18,4 22,6 100 109 30 31 

2 35,4 73,6 16,2 54,4 33 77 19 51 

3 88,6 63,6 26,2 1,2 131 83 56 0 

4 28,8 78,2 11,6 61 44 120 19 87 

5 89 79,8 10 0,8 131 128 11 0 

6 89,8 84,4 5,4 0 131 128 11 0 

7 89,8 82,4 7,4 0 131 126 13 0 

8 72,8 46,4 43,4 17 117 54 85 14 

C 

1 66,8 74 15,8 23 96 114 25 35 

2 37 73,6 16,2 52,8 37 76 20 47 

3 71,6 57,8 32 18,2 96 86 53 35 

4 34,2 78,2 11,6 55,6 48 120 19 83 

5 81,8 75,4 14,4 8 121 110 29 10 

6 87 78,6 11,2 2,8 127 123 16 4 

7 87,8 80,8 9 2 123 123 16 8 

8 63,8 45,6 44,2 26 52 120 19 79 

D 

1 72,2 71,4 18,4 20,8 106 109 33 27 

2 36,8 72,2 17,6 56,2 32 76 18 57 

3 73,4 57 32,8 19,6 110 75 67 23 

4 34 76,8 13 59 43 124 18 90 

5 85,6 76,4 13,4 7,4 124 119 23 9 

6 91,6 79,4 10,4 1,4 127 123 19 6 

7 90 78,6 11,2 3 129 120 22 4 

8 63,2 46,8 43 29,8 133 30 112 0 

E 

1 5,8 6,2 3,6 4 6 12 5 7 

2 3,4 6,2 3,6 6,4 0 11 1 8 

3 4,8 5,4 4,4 5 7 6 11 6 

4 3,8 7,4 2,4 6 5 14 3 8 

5 5,2 6 3,8 4,6 8 13 4 5 

6 6,2 7 2,8 3,6 9 14 3 4 

7 6 6,4 3,4 3,8 8 15 2 5 

8 2,8 7 2,8 7 0 17 0 13 

F 

1 1,2 84 2,4 8,6 1 123 5 16 

2 0 86,4 0 9,8 0 85 0 12 

3 0,2 84,4 2 9,6 0 127 1 17 

4 2,8 79,4 7 7 5 123 5 12 

5 2,2 77,8 8,6 7,6 8 122 6 9 

6 0,8 84,8 1,6 9 1 126 2 16 

7 2 81,8 4,6 7,8 2 122 6 15 

8 0,2 86 0,4 9,6 0 128 0 17 

G 

1 8,6 9,8 0 1,2 11 17 0 2 

2 4,8 9,8 0 5 1 12 0 7 

3 8,2 9,8 0 1,6 11 17 0 2 

4 8,4 9,8 0 1,4 11 17 0 2 

5 8,8 8,6 1,2 1 11 15 2 2 

6 8,8 9,4 0,4 1 11 16 1 2 

7 8,8 9,4 0,4 1 11 16 1 2 

8 9 2,8 7 0,8 1 17 0 12 

H 

1 1,2 87,8 2 8,6 0 133 1 16 

2 0 89,8 0 9,8 0 88 0 12 

3 0 88 1,8 9,8 0 131 3 16 

4 3,2 81,4 8,4 6,6 2 126 8 14 

5 2,8 81,2 8,6 7 2 126 8 14 

6 0,4 89,2 0,6 9,4 0 130 4 16 

7 1,8 86 3,8 8 0 130 4 16 

8 0 85,8 4 9,8 1 133 1 15 

I 

1 1,2 87,8 2 8,6 0 133 1 16 

2 0 89,8 0 9,8 0 88 0 12 

3 0 88 1,8 9,8 0 131 3 16 

4 3,2 81,4 8,4 6,6 2 126 8 14 

5 2,8 82 7,8 7 1 124 10 15 

6 0,6 88,4 1,4 9,2 0 131 3 16 

7 1,8 86 3,8 8 0 130 4 16 

8 0,8 71,6 18,2 9 0 134 0 16 

J 

1 38,4 35 6 8 47 52 16 17 

2 21,6 35,4 5,6 24,8 20 39 7 22 

3 44 35,6 5,4 2,4 55 57 11 9 

4 24,6 38,4 2,6 21,8 31 64 4 33 

5 43 37,2 3,8 3,4 61 59 9 3 
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R A 
5-Fold Holdout 

TP TN FP FN TP TN FP FN 

6 45,8 38,4 2,6 0,6 61 59 9 3 

7 45 38,4 2,6 1,4 63 62 6 1 

8 29,2 30,8 10,2 17,2 54 38 30 10 

K 

1 60,8 66,2 13,8 19,2 87 103 22 28 

2 32,8 66,8 13,2 47,2 33 73 7 47 

3 66,4 54,4 25,6 13,6 89 89 36 26 

4 31 71,6 8,4 49 43 113 12 72 

5 71,2 70,4 9,6 8,8 104 113 12 11 

6 77,8 71,8 8,2 2,2 113 113 12 2 

7 78,4 73 7 1,6 115 113 12 0 

8 38 58,8 21,2 42 0 125 0 115 

Note: 

Resampling Technique (R): Without Resampling (A), ROS (B), 

SMOTE (C), ADASYN (D), RUS (E), Tomek Links (F), NearMiss 

(G), EasyEnsemble (H), RUSBoost (I). 

Algorithm (A): LR (1), SVM (2), kNN (3), NB (4), DT (5), RF (6), 

XGB (7), NN/MLP (8). 

Red-Colored No.: Best Value; Blue-Colored No.: Worst Value 

Following the result of our experiment, we observed 

several interesting findings. First, some resampling 

techniques seemed to have a positive effect on the 

models’ performance. This is apparent, especially when 

oversampling and combined techniques. Other types of 

techniques, however, do not likely show any positive 

effect on models’ performance. Second, ensemble 

algorithms (in this case RF and XGB) achieved 

sufficiently better performance. This result was 

consistent on both 5-fold cross-validation and 70%: 

30% holdout training sessions. One traditional machine 

learning algorithm, i.e. DT, also scored relatively high 

performance compared to others. MLP, as the 

representation of a neural network algorithm, provides 

low performance in this context. 

3.2 Discussions 

In order to achieve the objective of this study, our 

research was designed in a framework to answer three 

research questions. This discussion section is therefore 

elaborated around these three research questions. 

RQ1: What type of resampling techniques would 

provide a potentially positive effect on the performance 

of the software defects prediction model on CM1 NASA 

PROMISE data (as the representation of a small yet 

imbalanced dataset)? 

Based on the result of our experiment, it is obviously 

evidenced that some type of resampling techniques did 

provide positive effect on models’ performance in 

classifying the defective software modules on the CM1 

NASA PROMISE dataset. It found that most models 

apparently scored low performance when trained using 

the original dataset which is highly imbalanced. 

The case was different when the models were trained 

using resampled datasets, especially those processed 

with oversampling and combined techniques. Most of 

the models’ performance tends to improve when trained 

using resampled datasets produced by these two types 

of methods. There is also one undersampling technique, 

i.e. NearMiss, which also provides a positive effect on 

the models’ performance. However, the effect of the use 

of these resampling techniques was not strongly similar. 

This gradation is visualized in a color scale matrix as 

depicted in Figure 2. 

The result from the two types of training sessions, i.e. 

5-fold cross-validation and 70%: 30% holdout, as 

depicted in the colour scale matrix in Figure 2 showing 

a strongly consistent pattern. A more highlighted 

(darker) area in the matrix represents a higher effect on 

the models’ performance. It seems that oversampling 

techniques (i.e. ROS, SMOTE and ADASYN) and 

combined techniques (i.e. SMOTEENN and 

SMOTETomek) provide sufficiently positive effects. 

Interestingly, there was one undersampling technique, 

i.e. NearMiss, which also offers a good effect on 

models’ performance. 

The resampling process of the ROS technique was 

carried out by duplicating randomly selected samples 

from the minority class so that the number of samples 

from the minority class increases and can balance the 

samples from the majority class [19]. ROS, therefore, 

does not add any new information to the dataset since it 

basically only duplicates existing data. For the context 

of training with small yet imbalanced datasets such as 

on software defect data, however, models’ capability 

had gained improvement in detecting positive cases 

benefiting from the addition of more positive samples 

even though they are basically duplicated with no new 

information added. 

In a slightly different context, the SMOTE technique 

carried out the resampling process by creating new 

sample instances based on a convex combination of 

adjacent samples (creating new synthetic samples by 

randomly selecting samples from the minority class and 

interpolating the randomly selected samples with a 

number of k samples which have the closest Euclidean 

distance), hence later the model might better recognize 

important minority classes [20]. However, SMOTE 

risks producing unrealistic instances and increases the 

chance of overfitting. With this mechanism, hence, 

SMOTE provided a relatively similar positive effect to 

models’ performance as ROS even though with lesser 

power. 

Similar to SMOTE, the ADASYN technique carried out 

the resampling process by creating new synthetic 

samples from the minority class which are considered 

more difficult to learn (more difficult to classify 

correctly) rather than uniformly resampling all samples 

from the minority class, by way of placing different 

weight distributions to the two types of classes [21]. 

However, ADASYN risks in producing instances that 

do not reflect the underlying distribution of the minority 

class, increasing the chance of overfitting and is 

sensitive to noise and outliers in the dataset, thus 

affecting the quality of the produced new synthetic 

samples. Considering this mechanism, ADASYN offers 

a fairly similar positive effect on models’ performance 

as SMOTE. 

Most of the undersampling techniques had shown 

relatively minor effects in our experiment. Except for 
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the case of NearMiss, other undersampling techniques 

did not provide any valuable improvement to 

the models’ performance. 

The resampling process of the RUS technique was 

carried out by deleting randomly selected data samples 

from the majority class so that the number of samples 

from the majority class decreases and can be balanced 

with the samples from the minority class [19]. 

However, RUS risks in eliminating samples that may 

contain valuable information for the training process. 

Our experiment showed that having a more balanced 

smaller dataset for the training processes indeed 

improves models’ performance on some measurements 

such as precision, sensitivity (recall), and G-mean. 

However, the performance did not show significant 

improvement based on other metrics. 

This case is quite similar with the TomekLinks 

technique. The TomekLinks technique carried out the 

resampling process by identifying pairs of samples 

having the closest Euclidean distance where each of 

them belongs to a different class (majority/negative and 

minority/positive) and then deleting part of the paired 

sample that belongs to the majority class [22]. In some 

cases, samples from the minority class are also going to 

be deleted. By deleting these samples, the distance 

between different classes becomes farther, so that the 

boundaries for decision-making between two different 

classes also become clearer. TomekLinks is able to 

reduce noise in the dataset. However, TomekLinks risks 

deleting too many samples from the minority class, 

which potentially leads to underfitting of the training 

process. Another drawback of TomekLinks is that it 

normally cannot completely produce balanced data so 

sometimes it needs to be combined with other 

resampling techniques. Our experiment proved this 

theory. The resampling result of TomekLinks still had 

a relatively imbalanced proportion as can be seen in 

Table 3. It is, therefore, the effect of TomekLinks on 

models’ performance was lesser compared to two other 

undersampling techniques (i.e. RUS and NearMiss). 

NearMiss, interestingly, provides a positive effect in 

our experiment. The resampling process of the 

NearMiss technique was carried out by identifying and 

removing several samples from the majority class that 

are close to a set of samples from the minority class 

[23]. Reducing samples from the majority class will 

help the model focus on the most relevant and important 

samples in recognizing and predicting the minority 

class [24]. However, although not as strong as RUS, 

NearMiss also risks eliminating samples that may 

contain valuable information for the training process. 

By considering this mechanism, it is only a 

consequence that NearMiss eventually provided 

a stronger positive effect than RUS. 

Among other types of resampling techniques, our 

experiment showed that both ensemble techniques had 

almost no effect on the models’ performance since they 

did not add the size of the dataset nor change the class 

proportion as can be observed in Table 3. The 

resampling process of the EasyEnsemble technique was 

carried out by dividing the imbalanced dataset into 

several balanced subsets, and then training the model on 

each subset [25]. Each training process on these subsets 

will provide predictions on the test data and all of the 

prediction results will be combined using a voting or 

averaging mechanism to produce the final prediction. 

With this kind of mechanism, the training process was 

actually only dependent on several smaller balanced 

datasets. However, the mechanism to split the original 

dataset into a number of subsets might not yield as 

appropriate proportion as those datasets resampled with 

undersampling techniques. 

A quite similar context is applied to the RUSBoost 

technique. The resampling process of the RUSBoost 

technique was carried out by combining the RUS with 

the Boosting technique in order to improve the model's 

performance in recognizing the minority class [26]. 

Initially, samples from the majority class are reduced 

using the undersampling technique. The dataset is then 

divided into several balanced subsets and training is 

performed on each subset. Each training process assigns 

weights (which may be different) to each sample. Each 

training process on these subsets will provide 

predictions on the test data and all of the prediction 

results will be combined using a voting or averaging 

mechanism to produce the final prediction [25]. The 

effect of the RUSBoost technique on models’ 

performance was to some extent similar to 

EasyEnsemble due to their relatively similar resampling 

process mechanism. 

Both combine resampling techniques, i.e. SMOTEENN 

and SMOTETomek, provide a relatively positive effect 

on the models’ performance in our experiment. This 

positive effect was mostly perhaps due to taking the 

benefit of the advantage of applying an oversampling 

approach as part of these techniques. The resampling 

process of the SMOTEENN technique was carried out 

by oversampling the minority class using SMOTE, then 

followed by undersampling the majority class using 

ENN to eliminate samples that have the potential to 

cause confusion or errors in classification by removing 

samples from the majority class where most of its k 

closest samples (k = 3) belong to the minority class [27].  

Meanwhile, the resampling process of the 

SMOTETomek technique was carried out by 

oversampling the minority class using SMOTE, then 

followed by undersampling the majority class using 

TomekLinks by randomly selecting samples from the 

majority class and deleting those with paired closest 

sample belonging to the minority class [22].  

As evidenced in our result, oversampling techniques 

were observed to have provided a sufficiently positive 

effect on models’ performance. Since the combined 

technique also applies an oversampling approach as 

part of their mechanism, they also yielded relatively 

similar positive effects as oversampling techniques. 
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The result of our experiment confirmed the study as 

reported in [9] where SMOTE provided a positive 

impact on the performance of defect prediction models. 

This result, however, is different from that of another 

study as reported in [10] where RUS combined with LR 

yielded the largest performance improvement of defect 

prediction models. Nevertheless, as reported in [8], 

RUS risks removing some instances that could provide 

more important information for the construction of the 

prediction models. 

In summary, our experiment showed that 

the oversampling-based and combined approach (which 

part of its mechanism is oversampling), provided 

a positive effect on models’ performance in predicting 

defective modules based on the CM1 NASA PROMISE 

dataset. On the other hand, ensemble-based resampling 

techniques such as EasyEnsemble and RUSBoost did 

not prove to provide a positive effect on models’ 

performance hence not suitable to be applied for 

developing defective software module prediction 

models. It is important to note, however, that this 

finding was based on the CM1 NASA PROMISE 

dataset hence it might have a potential bias to the 

condition of a particular dataset. 

RQ2: What type of classification algorithms would 

provide better performance for predicting defective 

software modules on CM1 NASA PROMISE data (as 

the representation of a small yet imbalanced dataset)? 

The result of our experiment on testing the classification 

algorithms for predicting defective software modules 

based on the CM1 NASA PROMISE dataset that was 

performed twice, each of which using 5-fold cross-

validation and 70%: 30% holdout training, yielded 

a sufficiently consistent pattern as represented in the 

colour scale matrix depicted in Figure 3. As can be 

observed in Figure 3, ensemble algorithms (i.e. RF and 

XGB) and DT showed higher performance based on 

most of the applied measurements compared to others. 

For the case of traditional machine learning algorithms, 

our experiment showed that DT achieved sufficiently 

higher performance compared to their other peers. LR 

also showed slightly higher performance than SVM, 

kNN, and NB. LR is an algorithm specifically designed 

for binary (binomial) classification. This algorithm is 

quite robust against the effects of small data noise and 

is insignificantly affected by small multicollinearity 

[28]. LR can also be used to perform binary 

classification for high-dimensional data by testing its 

regression coefficients. LR can effectively control the 

error rate when testing data [29]. By considering this 

context, it is reasonable that LR yielded fairly better 

performance than some other algorithms experimented 

in this study. 

A. Performance from 5-Fold CV         B. Performance from Holdout 

Figure 2. Color Scale Matrix Comparing the Effect of Resampling 

Techniques on Models’ Performance (Note: A: Without Resampling, 

B: ROS, C: SMOTE, D: ADASYN, E: RUS, F: TOMEKLinks, G: 

NearMiss, H: EasyEnsemble, I: RUSBoost, J: SMOTEENN, K: 

SMOTETomek) 

In a relatively similar context to LR, SVM is also an 

algorithm specifically designed for binary (binomial) 

classification. SVM trains the model and classifies data 

based on their degree of polarity, by creating a 

hyperplane that has the farthest distance between each 

different class [23], [30]. SVM is able to handle 

the multidimensional classification of complex data. 

Our experiment, however, showed that SVM did not 

achieve as high performance as LR. Small differences 

in the degree of polarity within the dataset may explain 

why this particular condition occurred. 

kNN, which is also categorized as a traditional machine 

learning algorithm, is basically a pattern recognition 

algorithm that can be used to perform classification by 

grouping data based on the class majority of the k 

closest neighbors (we set k=5) [31]. Training the kNN 

model using a small yet imbalanced dataset was rather 

ineffective since its classification mechanism which 

is based on the surrounding neighbors tends to detect 

negative cases. When this model is trained on 
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the resampled dataset, the classification tendency will 

be more or less influenced by their proportion 

characteristics. This condition is shown in Figure 3 

where there are a number of relatively lighter colored 

gradations on some applied resampling techniques for 

the kNN area compared to others. 

NB, as another traditional machine learning algorithm, 

employs Bayes’ theorem to perform classification. NB 

calculates the probability of each class and classifies the 

data based on the one with the highest value [32]. In this 

regard, NB is not as dependent as kNN on the 

proportion characteristics of the datasets, as also 

observed in Figure 3. 

Compared to other traditional machine learning 

algorithms, DT achieved the highest performance in our 

experiment. DT is a classification algorithm that works 

like a flow diagram. Data is classified into two (or 

more) categories at each stage of the classification 

process, from the "root", "stem", and "branch", to "leaf" 

where the categories become increasingly similar. The 

classification process starts from the “root” of the DT 

and recursively progresses until it reaches the “leaf” 

with the class label. At each node, a split condition is 

applied to decide whether the input value should 

proceed to the left or right subtree until it reaches the 

leaf node [33]. The root node and each internal node 

divide the training data into disjoint subsets so that the 

search space can be significantly and efficiently pruned 

when all sequences are used as potential features [34]. 

DT is widely used to create classification models 

similar to human-like reasoning that are easy to 

understand and easier to explain than other classifiers 

including Artificial Neural Networks (ANN) and vector 

machine classification [35]. The inherent feature 

selection process implemented by DT was likely 

to contribute positively to its better performance 

compared to other traditional algorithms. 

Ensemble type of models, i.e. RF and XGB, even 

achieved slightly better performance compared to DT in 

our experiment. RF is an algorithm that can be used for 

classification and regression [36]. This algorithm is a 

development of DT. RF is a type of bagging ensemble 

algorithm consisting of several decision trees. Each 

decision tree is trained with a dataset using the bootstrap 

aggregation (bagging) process. The training process of 

a DT uses the classification and regression tree (CART) 

algorithm. For classification, each node of the DT is 

designed to minimize impurity. The final decision of the 

random forest is made by voting on the classification of 

all DTs [37]. This mechanism explains why RF 

achieved slightly better performance than DT. 

XGB, as another ensemble algorithm, is also a 

development of DT. It employs gradient-boosted DT 

and applies a generation community learning approach 

as a mechanism to improve performance by preventing 

overfitting in the training process [13]. Having this kind 

of mechanism made XGB yield comparatively similar 

performance to RF and DT. Since XGB (and also RF) 

are developed based on DT, they were likely also 

gaining performance improvement benefits from the 

inherently implemented feature selection process of 

DT. 

As for the neural network type of algorithm, in this case, 

MLP, it achieved unsatisfactory performance in our 

experiment. This condition is reflected in the color scale 

matrix as depicted in Figure 2 where the area for MLP 

is significantly darker meaning that MLP’s 

performance was relatively lower compared to others. 

MLP is a type of feedforward neural network 

architecture that consists of at least three layers and is 

connected to a non-linear activation function. As an 

extension to the single-layer perceptron (which can only 

distinguish linearly separated data), MLP is able to 

distinguish data that cannot be separated linearly [38]. 

This type of model, however, normally requires a large 

size of the dataset to achieve sufficiently good 

performance [39]. It is hence not suitable to be applied 

as a defective software modules predictor based on 

a small yet imbalanced dataset such as in the context of 

this study. 

A limitation of our study is that we used the CM1 

dataset which contains highly correlated features 

particularly those derived from Halstead’s metrics or 

other complexity measures. Highly correlated features 

can impact the effectiveness of oversampling and 

undersampling techniques by reducing diversity, 

increasing redundancy, and affecting the balance of the 

feature space. Since the intention of our research design 

was to provide as natural software defect prediction 

model construction process description as possible, we 

used the original CM1 dataset instead of pre-processing 

it to reduce its dimension. In real practices, however, 

highly correlated features can be managed using 

dimensionality reduction techniques or feature selection 

methods to reduce redundancy and improve model 

efficiency when needed. 

In summary, our experiment showed that ensemble 

algorithms that extend the DT classification mechanism 

such as RF and XGB, achieved sufficiently good 

performance for predicting defective software modules 

based on the CM1 NASA PROMISE dataset. DT, as the 

foundational platform of these two ensemble 

algorithms, also achieved relatively good performance. 

On the other hand, MLP apparently not suitable for this 

type of task. Similar to the result of the experimented 

resampling techniques, it is important to note that this 

finding was based on the CM1 NASA PROMISE 

dataset hence it might have a potential bias to the 

condition as of the particular dataset. 

RQ3: What type of evaluation measurements (metrics) 

are deemed suitable for assessing the performance of 

software defect prediction models on CM1 NASA 

PROMISE data (as the representation of a small yet 

imbalanced dataset)? 

Our study employs 16 different measurements (metrics) 

each representing one out of three types of 
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measurement, namely single, combined, and rank 

performance measures. The reasons behind the use of 

these various different measurements were twofold. 

First, we plan to get a more comprehensive evaluation 

of the experimented variables in our study (i.e. the 

effect of various different resampling techniques and 

the performance of a number of classification 

algorithms). Second, we intend to get an insight into 

what type of measurement could provide a more 

descriptive assessment for the case of classification 

performance on defective software modules based on 

small yet imbalanced datasets. 

In order to elaborately analyze these metrics, we 

calculate both the population and sample variance to the 

collected models’ performance data on each measure 

(metric). Table 7 summarizes the calculated variance 

value of each measure. 

The higher variance value means that the measures 

(metrics) could provide a more sensitive capability in 

detecting smaller differences in models’ performance 

rates. Measurements (metrics) having higher variance 

values, hence, could offer a more detailed description of 

models’ performance. 

For single performance measures, accuracy is normally 

the most frequently reported value for classification 

tasks. However, in the case of imbalanced datasets, the 

predictive value of accuracy can be misleading for the 

evaluation process [40]. It is evidenced in our 

experiment where accuracy has the lowest values on 

both population and sample variance compared to other 

measures (metrics). This is mainly because accuracy 

places more weight on the majority than the minority 

class (by placing true negative as the dividend in the 

formula) in calculating models’ performance. As for 

precision and sensitivity, both resulted in modest 

variance values. It is basically due to the relatively equal 

weight placed on the majority and minority classes by 

both measures (metrics) in calculating models’ 

performance. In a quite similar context to accuracy, 

specificity has the second lowest variance values among 

all measures (metrics). Since it also places more weight 

on the majority class in calculating the performance, it 

suffers low variance in accuracy when used to assess 

models’ performance based on imbalanced datasets. 

Figure 2 and Figure 3 clearly show that the gradation 

range of accuracy and specificity is not as refined as in 

other measures on the colour scale matrix. Meanwhile, 

most of the combined performance measures have 

relatively modest variance values in our experiment. 

The explanation for this condition is that all combined 

performance measures place relatively equal weight on 

calculating the models’ performance by way of 

combining single performance measures in their 

formulas. By combining the single performance 

measures to their calculating formulas, the combined 

performance measures more or less have placed equal 

weight on both majority and minority classes in 

calculating models’ performance. Most of them 

eventually yielded relatively modest variance values in 

our experiment. A different condition occurred to the 

positive and negative Likelihood scores which resulted 

in very high variance values. It is mainly because 

likelihood scores have relatively longer-range values 

due to their formulas. 

 

A. Performance from 5-Fold CV    B. Performance from Holdout 

Figure 3. Colour Scale Matrix Comparing the Performance of Eight 

Different Classification Algorithms (Note: 1: LR, 2: SVM, 3: kNN, 

4: NB, 5: DT, 6: RF, 7: XGB, 8: MLP) 

Table 7. Variance from the 16 Measurement (Metric) 

No. Measure 5-Fold Holdout 

Var.P Var.S Var.P Var.S 

1 Accuracy 0,0171 0,0181 0,0161 0,0161 

2 Precision 0,086 0,087 0,109 0,111 

3 Sensitivity 0,121 0,122 0,148 0,15 

4 Specificity 0,022 0,022 0,0222 0,0222 

5 F-Measure 0,09 0,091 0,079 0,08 

6 AGF 0,089 0,09 0,077 0,078 

7 Blcd. Accry. 0,0273 0,0273 0,0283 0,0283 

8 Youden’s Id 0,107 0,108 0,111 0,113 

9 + Likelhd 20,001 20,261 14,381 14,581 

10 - Likelhd 0,1343 0,1353 0,1543 0,1563 

11 MCC 0,102 0,103 0,11 0,111 

12 Chn. Kappa 0,105 0,106 0,111 0,113 

13 G-mean 0,082 0,083 0,121 0,123 

14 DP 0,092 0,094 0,063 0,064 

15 ROC/AUC 0,035 0,035 0,041 0,042 

16 Lift Chart 0,3762 0,382 0,5132 0,5192 

Note: 

1, 2, 3: Rank Order 

Red-Colored No.: High Value; Blue-Colored No.: Low Value 
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As for the rank performance measure, in this case is 

ROC/AUC and Lift Chart, they yielded relatively high 

variance values on our experiment with Lift even 

having the second highest values on the chart. Again, it 

is due to the equally placed weight on both majority and 

minority classes in calculating the models’ 

performance. 

In summary, based on our experiment, both combined 

and rank-based performance measures (metrics) are 

deemed suitable for evaluating the models’ 

performance for predicting defective software modules 

based on the CM1 NASA PROMISE dataset. On the 

other hand, single performance measures, especially 

accuracy and specificity are not a good candidate for 

measuring this type of task. It is also important to note 

that if the dataset is imbalanced (with a majority of non-

defective instances), specificity should be strongly 

considered as a metric since it puts more penalty on 

false positives measure. 

4. Conclusions 

Our study came up with three conclusions. First, some 

types of resampling techniques, especially 

oversampling and combined approaches, provide 

sufficiently positive effects on models’ performance for 

predicting defective software modules. One 

undersampling technique, i.e. NearMiss, also 

potentially provides a positive effect on models’ 

performance. Contrarily, ensemble-based resampling 

techniques did not show any positive effect on models’ 

performance hence not suitable for this context. Second, 

ensemble-based algorithms which extend the DT 

classification mechanism such as RF and XGB, 

achieved sufficiently good performance for predicting 

defective software modules. DT, as the foundational 

platform of these two ensemble algorithms, also 

achieved relatively good performance. On the other 

hand, MLP apparently came with disappointing 

performance for this context. Third, combined and 

rank-based performance measures (metrics) are deemed 

suitable for evaluating the models’ performance for 

predicting defective software modules. On the contrary, 

single performance measures, especially accuracy and 

specificity are not a reliable measure for this context. 

These three conclusions drawn from our study however 

cannot be generalized to other contexts since we only 

employed CM1 NASA PROMISE dataset. We suggest 

extending this research using more datasets to obtain 

more statistically trustworthy results and completing 

the experimented algorithms with a representation of 

stack-based ensemble in addition to bagging and 

boosting-based ensemble algorithms that have been 

tried in this study. 
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