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Abstract  

Problems with small sample sizes and high dimensionality are common in pattern recognition. Almost all machine learning 

algorithms degrade in high-dimensional data, so that singularities in the scatter matrices, the main problem of the Linear 

Discriminant Analysis (LDA) technique, might result. A null space-based LDA (NLDA) has been conceived to address the 

singularity issue. NLDA aims to maximize the distance between classes in the null space of the within-class scatter matrix. In 

the earliest research, the NLDA method was performed by computing eigenvalue decomposition and singular value 

decomposition (SVD). This research led to several new implementations of the NLDA method using other matrix 

decompositions. The new implementations include NLDA using Cholesky decomposition and NLDA using QR decomposition. 

This paper compares the performance of three NLDA methods using different matrix decompositions, namely SVD, Cholesky 

decomposition, and QR decomposition. Two sets of data were used in the experiments that used three different NLDA 

algorithms. To determine the performance of the NLDA methods, the classification accuracy of the three methods was measured 

using the Confusion Matrix. The results show that the NLDA method using SVD has the best performance when compared to 

the other two methods, achieving 77.8% accuracy for the Colon dataset and 98.8% accuracy for the TKI-resistance dataset. 

Keywords: linear discriminant analysis; small sample size; null space; singular value decomposition (SVD); Cholesky 

decomposition; QR decomposition 
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1. Introduction  

Research on image recognition has been going strong 

for decades. A few examples of related applications 

include smart cards, surveillance systems, biometrics, 

information security, and access control [1]. Real-world 

data sets often have too many dimensions. Almost all 

machine learning algorithms degrade in high-

dimensional data because high-dimensional data is 

likely to contain noise, redundant (correlated between 

variables), and features with small variances that can 

cause a phenomenon called the curse of dimensionality 

[2]. Besides causing high computation time [3], high 

dimensionality with a much smaller number of samples 

than dimensionality can also cause overfitting [4], thus 

reducing the performance of machine learning 

algorithms. Not all features in high-dimensional data 

are relevant to the problem at hand, so it is necessary to 

reduce them. Dimensionality reduction is useful for 

improving the performance of machine learning 

algorithms, memory efficiency, reducing computational 

costs, and visualization [5]. The objective is to reduce 

the number of dimensions of a high-dimensional dataset 

without sacrificing any of the useful information 

contained therein [6]. 

Many dimension reduction techniques have been 

suggested in recent decades. Linear Discriminant 

Analysis (LDA) and Principal Component Analysis 

(PCA) are statistical-based methods now widely 

utilized for dimensionality reduction. LDA is a class-

based (supervised) dimensionality reduction method, 

while PCA is a dimensionality reduction method but not 

class-based (unsupervised), so PCA cannot guarantee 

maximum separation between classes [6]. For 

classification, LDA is generally more suitable than 

PCA [7]. 

If the dimension of the data is much greater than the 

number of training vectors, then the within-class matrix 

and the total scatter matrix are singular. This weakness 

is considered a main problem of LDA, which is 

prevalently known as the singularity problem caused by 

Small Sample Size (SSS) [8]. Classical LDA cannot 

https://doi.org/10.29207/resti.v8i3.5637
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handle the SSS problem, so many variations of LDA are 

proposed to overcome the SSS problem. Among them 

are Direct LDA (DLDA) [9], Regularized LDA 

(RLDA) [10], Subspace LDA (SLDA) [11], Null space 

LDA (NLDA) [12], ILDA [13], GO-LDA [14], and 

many more. 

Here, we zero in on NLDA as it pertains to the SSS 

issue. There have been many variations of NLDA with 

new and faster implementations. In [15] and [12], the 

NLDA method is performed by calculating eigenvalue 

decomposition and singular value decomposition 

(SVD) to obtain the optimal transformation matrix. 

However, it turns out that the NLDA method has a high 

computational cost, so in [16] and [17], a new method 

is proposed without calculating eigenvalue 

decomposition and SVD but using QR decomposition. 

For high dimensionality and small sample size 

problems, [18] proposed a subspace method and 

introduced the notion of a tenuous null subspace and its 

associated projection operator. Another development of 

NLDA is also discussed in [19], namely by applying 

Cholesky decomposition to the scatter matrix in a class. 

A reference collection of variations of NLDA methods 

is discussed in [8].  

The three types of NLDA methods that will be 

discussed are methods that apply matrix decomposition, 

namely the SVD method, Cholesky decomposition, and 

QR decomposition on within-class scatter matrices, 

respectively. Previous research has not compared the 

performance of NLDA methods that use the three 

matrix decompositions. The research in [16] discusses 

two variations of the NLDA method using SVD, and 

one using QR decomposition. Then the research in [17] 

also discusses two variations of the NLDA method 

using SVD and two others using QR decomposition, but 

experiments are only carried out on the NLDA method 

using QR decomposition. 

2. Research Methods 

2.1 Classical Linear Discriminant Analysis (LDA) 

Given a data matrix 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} =
[𝐴1, … , 𝐴𝑘] ∈ ℝ𝑚×𝑛, where 𝑎𝑖 ∈ ℝ𝑚 is the 𝑖-th training 

sample of 𝑚 dimensional space for 𝑖 = 1,2, … , 𝑛,  𝐴𝑖 ∈
ℝ𝑚×𝑛𝑖  is the collection of training samples from the 𝑖-
th class for 𝑖 = 1,2, … , 𝑘, and ∑ 𝑛𝑖 = 𝑛𝑘

𝑖=1 . Let 𝑁𝑖 be the 

collection of column indices for each 𝑖-th class, where 

𝑎𝑗, for 𝑗 ∈ 𝑁𝑖, is a member of that class. In the classic 

LDA, within-class scatter matrices, between-class 

scatter matrices, and total scatter matrices, are defined 

as Formula 1. 

𝑆𝑤 = ∑ ∑ (𝑎𝑗 − 𝑐𝑖)(𝑎𝑖 − 𝑐𝑖)
𝑇

𝑗∈𝑁𝑖

𝑘
𝑖=1 = 𝐻𝑤𝐻𝑤

𝑇          (1) 

𝑆𝑏 = ∑ 𝑛𝑖(𝑐𝑖 − 𝑐)(𝑐𝑖 − 𝑐)𝑇𝑘
𝑖=1 = 𝐻𝑏𝐻𝑏

𝑇             

𝑆𝑡 = ∑ (𝑎𝑖 − 𝑐)(𝑎𝑖 − 𝑐)𝑇𝑛
𝑖=1 = 𝐻𝑡𝐻𝑡

𝑇 = 𝑆𝑏 + 𝑆𝑤      

Where 𝑐𝑖 is the local centroid of the 𝑖-th class and is 

defined as 𝑐𝑖 =
1

𝑛𝑖
𝐴𝑖𝑒𝑖, where 𝑒𝑖 = (1,1, … ,1)𝑇 ∈ ℝ𝑛𝑖, 

𝑐 is the global centroid and is defined as 𝑐 =
1

𝑛
𝐴𝑒, 

where 𝑒 = (1,1, … ,1)𝑇 ∈ ℝ𝑛. 𝐻𝑏, 𝐻𝑤, and 𝐻𝑡 matrices 

are defined as Formula 2. 

𝐻𝑤 = [𝐴1 − 𝑐1𝑒1
𝑇, … , 𝐴𝑘 − 𝑐𝑘𝑒𝑘

𝑇] ∈ ℝ𝑚×𝑛   

𝐻𝑏 = [√𝑛1(𝑐1 − 𝑐), … , √𝑛𝑘(𝑐𝑘 − 𝑐)] ∈ ℝ𝑚×𝑘       (2) 

𝐻𝑡 = 𝐴 − 𝑐𝑒𝑇 ∈ ℝ𝑚×𝑛 

Finding the best projection matrix G is the goal of the 

conventional LDA approach, which involves solving 

the following optimisation problem is shown in 

Formula 3. 

𝐺 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝐺𝑡𝑟𝑎𝑐𝑒((𝐺𝑇𝑆𝑤𝐺)−1(𝐺𝑇𝑆𝑏𝐺))            (3) 

trace(∙) demonstrates the trace operator. By tackling the 

accompanying expanded eigenvalue issue, we can get 

the answer for Formula 4. 

𝑆𝑏𝑔 = λ𝑆𝑤𝑔, λ ≠ 0               (4) 

whose columns in 𝐺 are the eigenvectors that 

correspond to the 𝑛 − 1 highest eigenvalues. 

2.2 Null Space LDA (NLDA) using Singular Value 

Decomposition (SVD) 

The null space of 𝑆𝑤 must be calculated to find the 

optimum matrix 𝐺. Because data is highly dimensional, 

this null space may be large. [20] improved the 

efficiency of the algorithm in [21] via the initial step of 

removing the null space of 𝑆𝑡. 

Let 𝐻𝑡 = 𝑈Σ𝑉𝑇 be the SVD [22] of 𝐻𝑡. Here 𝐻𝑡 is 

defined by Formula 2, and 𝑈 and 𝑉 are orthogonal, 

Σ = [
Σ𝑡 0
0 0

] , 

Σ𝑡 = ℝ𝑡×𝑡 is the diagonal entries sorted in the non-

ascending order, and 𝑡 = 𝑟𝑎𝑛𝑘(𝑆𝑡). Then  

𝑆𝑡 = 𝐻𝑡𝐻𝑡
𝑇 = 𝑈𝛴𝑉𝑇𝑉𝛴𝑇𝑈𝑇 = 𝑈 [𝛴𝑡

2 0
0 0

] 𝑈𝑇 .  

Let 𝑈 = (𝑈1, 𝑈2) be 𝑈 divided by 𝑈1 ∈ ℝ𝑚×𝑡 and 𝑈2 ∈
ℝ𝑚×(𝑚−𝑡). Data may be projected into the subspace 

spanned by the columns of 𝑈1 to remove the null space 

from 𝑆𝑡. After removing the null space from 𝑆𝑡, the 

scatter matrices are 𝑆̃𝑏, 𝑆̃𝑤, and 𝑆̃𝑡. That is 

𝑆̃𝑏 = 𝑈1
𝑇𝑆𝑏𝑈1, 𝑆̃𝑤 = 𝑈1

𝑇𝑆𝑤𝑈1, and 𝑆̃𝑡 = 𝑈1
𝑇𝑆𝑡𝑈1. 

𝐺 = 𝑈1𝑁 gives the optimal transformation of NLDA 

with the calculated 𝑈1. Here 𝑁 solves the following 

optimization problem [9] as shown in Formula 5. 

𝑁 = 𝑎𝑟𝑔 𝑚𝑎𝑥𝑁𝑇𝑆̃𝑤𝑁=0𝑡𝑟𝑎𝑐𝑒(𝑁𝑇𝑆̃𝑏𝑁)            (5) 

that is, the columns of 𝑁 are in the null space of 𝑆̃𝑤, 

while maximizing trace(𝑁𝑇𝑆̃𝑏𝑁). 
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Let 𝑊 be a matrix whose columns of 𝑊 span the null 

space of 𝑆̃𝑤. Next, 𝑁 = 𝑊𝑀 is applied to the next 

determined matrix 𝑀. for each 𝑀,  the constraint in 

Formula 5 satisfies 𝑁 = 𝑊𝑀, so we can calculate the 

optimal 𝑀 by maximizing 

 𝑡𝑟𝑎𝑐𝑒(𝑀𝑇𝑊𝑇𝑆̃𝑏𝑊𝑀).  

By requiring an orthogonality constraint on 𝑀 [20], the 

optimal 𝑀 is given by the eigenvectors of 𝑊𝑇𝑆̃𝑏𝑊 

associated with the nonzero eigenvalues. The 

calculation of the eigen decomposition of 𝑆̃𝑤 yields the 

matrix 𝑊. The optimal transformation of NLDA is 

given by  

𝐺 = 𝑈1𝑊𝑀. 

The NLDA algorithm using SVD is shown in Table 

1[12]. 

Table  1. NLDA Algorithm using SVD 

NLDA algorithm using SVD 

Input: matrix 𝐴 

Output: transformation matrix 𝐺 

1. From the matrix 𝐻𝑡, calculate the reduced SVD of 𝐻𝑡 i.e., 

𝐻𝑡 = 𝑈1Σ𝑡𝑉1
𝑇; 

2. Form the matrix 𝑆̃𝑏 = 𝑈1
𝑇S𝑏𝑈1 and 𝑆̃𝑤 = 𝑈1

𝑇S𝑤𝑈1; 

3. Compute the matrix 𝑊 which is the null space of 𝑆̃𝑤 by 

eigen decomposition; 

4. Form the matrix 𝑀 which is the upper eigenvector of 

𝑊𝑇𝑆̃𝑏𝑊 ; 

5. 𝐺 = 𝑈1𝑊𝑀. 

2.3. Null Space LDA (NLDA) using Cholesky 

Decomposition 

In this section, 𝑥𝑗
(𝑖)

 is used to indicate that a sample 𝑥 is 

the 𝑗th sample of the 𝑖th class. In this case, 𝐻𝑤 can be 

expressed as 

𝐻𝑤 = [𝑥1
(1)

− 𝑐1, … , 𝑥𝑛1−1
(1)

− 𝑐1, 𝑥𝑛1

(1)
− 𝑐1, …, 

            𝑥1
(𝑐)

− 𝑐𝑘, … , 𝑥𝑛𝑘−1
(𝑐)

− 𝑐𝑘, 𝑥𝑛𝑘

(𝑐)
− 𝑐𝑘] ∈ ℝ𝑚×𝑛 

Assuming the last sample of each class is removed from 

𝐻𝑤, we get [19] 

𝐻𝑤
𝑟𝑒𝑚 = [𝑥1

(1)
− 𝑐1, … , 𝑥𝑛1−1

(1)
− 𝑐1, … , 𝑥1

(𝑐)
− 𝑐𝑘, 

                … , 𝑥𝑛𝑘−1
(𝑐)

− 𝑐𝑘] ∈ ℝ𝑚×(𝑛−𝑘) 

The range space of 𝐻𝑤 and 𝑆𝑤 are also proved to be 

equal in Formula 1. Then, we can see that the space 

spanned by 𝐻𝑤
𝑟𝑒𝑚 is the range space of 𝑆𝑤. 

Let 𝑆𝑊̅ = (𝐻𝑤
𝑟𝑒𝑚)𝑇𝑆𝑤𝐻𝑤

𝑟𝑒𝑚 and 𝑆𝐵̅ = (𝐻𝑤
𝑟𝑒𝑚)𝑇𝑆𝑏𝐻𝑤

𝑟𝑒𝑚. 

To calculate the eigenvectors of 𝑆𝑊̅
−1

𝑆𝐵̅, we use the 

following steps [19]: 

Compute the Cholesky decomposition [23] of 𝑆𝑊̅, i.e., 

𝑆𝑊̅ = (𝑅̅𝑊)𝑇𝑅̅𝑊 where 𝑅̅𝑊 ∈ ℝ(𝑛−𝑘)×(𝑛−𝑘) is an upper 

triangular matrix. 

Let 𝐻̅𝐵 = (𝐻𝑤
𝑟𝑒𝑚)𝑇𝐻𝑏, then 𝑆𝐵̅ = 𝐻̅𝐵𝐻̅𝐵

𝑇
. Compute the 

SVD of (𝑅𝑊
−1)𝑇𝐻̅𝐵 to obtain 𝑈̅𝐵. 

Compute 𝑅𝑊
−1𝑈̅𝐵. The column of 𝑅𝑊

−1𝑈̅𝐵 are the eigen 

vectors 𝑆𝑊̅
−1

𝑆𝐵̅ corresponding to nonzero eigenvalues. 

To compute 𝑆𝑊̅ efficiently, let 𝐻̅𝑤 = (𝐻𝑤
𝑟𝑒𝑚)𝑇𝐻𝑤, then 

𝑆𝑊̅ = 𝐻̅𝑤𝐻̅𝑤
𝑇
. First, compute (𝐻𝑤

𝑟𝑒𝑚)𝑇𝐻𝑤
𝑟𝑒𝑚, then 

compute (𝐻𝑤
𝑟𝑒𝑚)𝑇𝐻𝑤 from (𝐻𝑤

𝑟𝑒𝑚)𝑇𝐻𝑤
𝑟𝑒𝑚 by using the 

relationship between 𝐻𝑤 and 𝐻𝑤
𝑟𝑒𝑚. 

The optimal projection matrix in 𝑆𝑤 's null space may be 

quickly determined by considering the following 

technique. Let 

𝐻𝑛𝑢𝑙 = 𝐻𝑏 − 𝐻𝑤
𝑟𝑒𝑚((𝐻𝑤

𝑟𝑒𝑚)𝑇𝐻𝑤
𝑟𝑒𝑚)−1(𝐻𝑤

𝑟𝑒𝑚)𝑇𝐻𝑏 

∈ ℝ𝑚×(𝑘−1)  

and the SVD of 𝐻𝑛𝑢𝑙 be 

 𝐻𝑛𝑢𝑙 = 𝑈𝑛𝑢𝑙Σ𝑛𝑢𝑙𝑉𝑛𝑢𝑙
𝑇 .  

Based on the proof of the theorem in [19], 𝐺𝑛𝑢𝑙 = 𝑈𝑛𝑢𝑙. 

However, this method does not require the SVD of 𝐻𝑛𝑢𝑙 

to obtain 𝐺𝑛𝑢𝑙.  

The NLDA algorithm using Cholesky decomposition is 

shown in Table 2 [19]. 

Table 2. NLDA Algorithm using Cholesky Decomposition 

NLDA algorithm using cholesky decomposition 

Input: matrix 𝐴 

Output: transformation matrix 𝐺 

1. From the matrices 𝐻𝑤
𝑟𝑒𝑚  and  𝐻𝑏, we can calculate 

𝐻𝐵 = (𝐻𝑤
𝑟𝑒𝑚)𝑇𝐻𝑏; 

2. Calculate (𝐻𝑤
𝑟𝑒𝑚)𝑇𝐻𝑤

𝑟𝑒𝑚 and its Cholesky 

decomposition, i.e. (𝐻𝑤
𝑟𝑒𝑚)𝑇𝐻𝑤

𝑟𝑒𝑚 = (𝑅̅𝑤
𝑟𝑒𝑚)𝑇𝑅̅𝑤

𝑟𝑒𝑚; 

3. Calculate the matrix 𝐻𝑛𝑢𝑙, i.e.   

𝐻𝑛𝑢𝑙 = 𝐻𝑏 − 𝐻𝑤
𝑟𝑒𝑚(((𝑅̅𝑤

𝑟𝑒𝑚)−1((𝑅̅𝑤
𝑟𝑒𝑚)−𝑇𝐻𝐵

̅̅ ̅̅ )); 

4. Calculate 𝐻𝑛𝑢𝑙
𝑇 𝐻𝑛𝑢𝑙 and its eigen decomposition, i.e. 

𝐻𝑛𝑢𝑙
𝑇 𝐻𝑛𝑢𝑙 = 𝐸𝐷𝐸𝑇; 

5. Calculates the optimal projection matrix on the nul 

space of 𝑆𝑤, i.e. 𝐺𝑛𝑢𝑙 =  𝐻𝑛𝑢𝑙𝐸𝐷−1/2; 

6. Obtained the transformation matrix  𝐺 = 𝐺𝑛𝑢𝑙. 

2.4 Null Space LDA (NLDA) using QR Decomposition 

The NLDA method suggested in [16] makes 

assumptions about the linear independence of the 

training data vectors in order to simplify things. Within 

the NLDA method, there is only a one-step economical 

QR decomposition of an 𝑚 × (𝑛 − 1) matrix if each 

training data vectors are linearly independent [17].  

Taking into consideration that the subtraction vector is 

constructed from the first samples of each class, then 

𝑏𝑗
(𝑖)

= 𝑎𝑗+1
(𝑖)

− 𝑎1
(𝒊)

, for 𝑖 = 1, … , 𝑘 and 𝑗 = 1, … , 𝑛𝑖 − 1. 

𝐻𝑤
𝑑𝑖𝑓𝑓

 and 𝐻𝑏
𝑑𝑖𝑓𝑓

 defined, as  

𝐻𝑤
𝑑𝑖𝑓𝑓

= [𝑏1
1, … , 𝑏𝑛1−1

1 , 𝑏1
2, … , 𝑏𝑛2−1

2 , … , 𝑏1
𝑘, … , 𝑏𝑛𝑘−1

𝑘 ] 

∈ ℝ𝑚×(𝑛−𝑘) 
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Without a doubt, 𝑆𝑤 and 𝐻𝑤 share the same range space.  

In this case, 𝐻𝑏
𝑑𝑖𝑓𝑓

 is defined as 

𝐻𝑏
𝑑𝑖𝑓𝑓

= [𝑓1, 𝑓2, … , 𝑓𝑘−1] ∈ ℝ𝑚×(𝑘−1)  

where 𝑓𝑖 = 𝑐(𝑖+1) − 𝑐(1) for 𝑖 = 1, … , 𝑘. 

Assume that 𝑛 data points in the data matrix 𝐴 ∈ ℝ𝑚×𝑛 

are linearly independent. It means 𝑟𝑎𝑛𝑘(𝑆𝑏) +
𝑟𝑎𝑛𝑘(𝑆𝑤) = 𝑟𝑎𝑛𝑘(𝑆𝑡), which is true in many 

applications with high-dimensional data [17], then we 

obtain 𝛾 = 𝑟𝑎𝑛𝑘(𝑆𝑡) = 𝑛 − 1 and [𝐻𝑤
𝑑𝑖𝑓𝑓

, 𝐻𝑏
𝑑𝑖𝑓𝑓

] ∈

ℝ𝑚×(𝑛−1) is a full column rank matrix. 

Let 𝑞 = 𝑟𝑎𝑛𝑘(𝐻𝑤
𝑑𝑖𝑓𝑓

), 𝛾 = 𝑟𝑎𝑛𝑘([𝐻𝑤
𝑑𝑖𝑓𝑓

, 𝐻𝑏
𝑑𝑖𝑓𝑓

]), and 

the economic QR decomposition [24] of the matrix 

[𝐻𝑤
𝑑𝑖𝑓𝑓

, 𝐻𝑏
𝑑𝑖𝑓𝑓

] ∈ ℝ𝑚×(𝑛−1) be 

[𝐻𝑤
𝑑𝑖𝑓𝑓

, 𝐻𝑏
𝑑𝑖𝑓𝑓

] = [𝑄̃1, 𝑄̃2] [
𝑅̃11 𝑅̃12

0 𝑅̃22

] 

where 𝑄̃1 ∈ ℝ𝑚×𝑞 and 𝑄̃2 ∈ ℝ𝑚×(𝛾−𝑞) are column 

orthogonal matrices, 𝑅̃11 ∈ ℝ𝑞×(𝑛−𝑘) and 𝑅̃22 ∈
ℝ(𝛾−𝑞)×(𝑘−1) are of full row rank. Next, 𝑄̃2 solves the 

optimization problem [17].  

From the explanation above, it can be seen that if n data 

points in the data matrix 𝐴 ∈ ℝ𝑚×𝑛 are linearly 

independent, then the optimization problem may be 

solved using one step QR decomposition.  

The NLDA algorithm using QR decomposition is 

shown in Table 3 [17]. 

Table 3. NLDA Algorithm using QR Decomposition 

NLDA algorithm using QR decomposition 

Input: matrix 𝐴 whose columns are linearly independent 

Output: transformation matrix 𝐺 

1. From the matrices 𝐻𝑤
𝑑𝑖𝑓𝑓

 and Hb
diff, 

2. Calculate the QR decomposition of [𝐻𝑤
𝑑𝑖𝑓𝑓

, 𝐻𝑤
𝑑𝑖𝑓𝑓

] i.e. 

[𝐻𝑤
𝑑𝑖𝑓𝑓

, 𝐻𝑤
𝑑𝑖𝑓𝑓

] = [𝑄̃1, 𝑄̃2] [
𝑅̃11 𝑅̃12

0 𝑅̃22

]; 

3.  𝐺 = 𝑄̃2. 

In general, machine learning is more effective on bigger 

datasets for pattern recognition, therefore applying it to 

datasets with a small sample size is certain to cause 

problems. Machine learning's accuracy and resilience 

degrade with decreasing dataset sizes. Sparsity is an 

inherent property of high-dimensional spaces [25]. 

Information extraction from limited datasets, deep 

learning techniques for data augmentation, and 

dimensionality reduction in complicated big data 

analyses are some of the approaches that have been 

investigated in an effort to address these issues [26]. 

2.5 Evaluation Method  

The evaluation is carried out by computing the accuracy 

of each NLDA model. Find the accuracy value with the 

help of the Confusion Matrix. An actual value vs the 

model's predicted value comparison is shown via a 

confusion matrix [27]. Confusion Matrix is used as a 

metric to analyze how machine learning classifiers 

perform on datasets, making it possible to define a wide 

variety of performance metrics. Figure 1 is an overview 

of the Confusion Matrix. 

 

Figure 1. Confusion Matrix 

TP value means the number of correct positive 

predictions. FP value means the example is actually 

negative, but the classifier marked it as positive. FN 

value means the example marked by the classifier is 

negative but actually positive. Finally, TN is where the 

examples are entirely wrong. 

When the dataset contains more than two classes, the 

matrix grows with multiple classes. For example, if 

there are three classes, then the matrix is a 3 x 3 matrix. 

Whatever the size of the confusion matrix, the method 

for interpreting it is the same. 

The accuracy of a prediction system is defined as the 

proportion of accurate predictions to total data [28]. 

Formula 6 is used to determine the accuracy value. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
              (6) 

3.  Results and Discussions 

3.1 Results 

Experimental studies are conducted and discussed in 

this section to evaluate the three NLDA methods. We 

compared three NLDA methods by visualizing the 

results and showing their classification performance. 

Python programming was used in this experiment to 

model the NLDA method, calculate the linear 

discriminant for each model, and evaluate the 

experimental results. The evaluation method in section 

2.5 is used for all NLDA methods.  

Experiments were conducted on two datasets obtained 

from Openml web and Orange software 

(https://www.openml.org/search?type=data&status=ac

tive&id=45087). The 2000-dimensional Colon Cancer 

dataset, consisting of 62 data samples and two classes, 

and the 467-dimensional TKI-resistance dataset, 

consisting of 280 data samples and three classes, were 

divided into two, 70% for training and 30% for testing. 

The linear discriminant (LD) result can be calculated by 

multiplying the testing data matrix A with the 

transformation matrix G, which is then used to create 

data visualizations as in Figure 2 and Figure 3. 

https://www.openml.org/search?type=data&status=active&id=45087
https://www.openml.org/search?type=data&status=active&id=45087
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Figure 2. Visualization of Three NLDA Models from the Colon 

Dataset 

 

Figure 3. Visualization of Three NLDA Models from the TKI-

resistance Dataset 

Excel was used to create the visual representation seen 

in the graph above. Next, we use Formula 5 to create a 

Confusion Matrix which is presented in Figure 4 and 

Figure 5. Meanwhile, Table 4 shows the accuracy of all 

NLDA models. 

 

Figure 4. Confusion Matrix of TKI-resistance Dataset with NLDA 

using SVD 

Table  4. The Accuracy of Three NLDA Methods 

Dataset Using SVD 
Using Cholesky 

Decomposition 

Using QR 

Decomposition 

Colon 77.8% 66.6% 77.8% 

TKI-

resistance 

98.8% 64.3% 80.9% 

 

Figure 5. Confusion Matrix of TKI-resistance Dataset with NLDA 

using Cholesky Decomposition 

3.2 Discussions 

Figure 2 is the linear projection diagram of the Colon 

dataset with the NLDA method, using SVD, Cholesky 

decomposition, and QR decomposition, respectively. 

Similarly, Figure 3 is a linear projection diagram of the 

TKI-resistance dataset with the NLDA method, using 

SVD, Cholesky decomposition, and QR decomposition, 

respectively.  

Figure 2 shows that QR and SVD have good class 

separation between class 1 and class 2, although 

overfitting still occurs in both. It means that the best 

NLDA method for the Colon dataset uses SVD and QR 

decomposition, as evidenced by the accuracy results in 

Table 4, which is 77.8%, both with SVD and QR 

decomposition. While in Figure 2 shows that SVD has 

the best class separation between class 1, class 2, and 

class 3. It means that the best NLDA method for the 

TKI-resistance dataset uses SVD, which can be proven 

from the accuracy results in Table 4, which is 98.8%. 

Figure 4 and Figure 5 show the Confusion Matrix of the 

TKI-resistance dataset, using the NLDA method with 

SVD and Cholesky Decomposition, respectively. The 

numbers 0, 1, and 2 on the left side and bottom indicate 

the class name, while the colour indicates the amount of 

data. Figure 4 shows that almost all data is classified 

correctly, i.e. 28 data in class 0, 32 data in class 1, and 

23 data in class 2. There is only 1 data that is classified 

in class 0, but in fact, it is in class 2. In contrast to Figure 

5, 30 data have been misclassified. Only a few data are 

classified correctly, i.e. 15 data in class 0, 27 data in 

class 1, and 12 data in class 2. 

The difference in results in the three methods can occur 

because of the difference in treatment after obtaining 

the scatter matrix. In the first method, the 𝐻𝑡 matrix is 

used to calculate the SVD, thus obtaining the 𝑈 matrix 

to calculate the transformation matrix 𝐺. The second 

method requires the 𝐻𝑤
𝑟𝑒𝑚 matrix to calculate the 

Cholesky decomposition, thus obtaining the 𝑅 matrix, 
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the lower triangular matrix. However, the Cholesky 

decomposition can only be calculated if the matrix 

(𝐻𝑤
𝑟𝑒𝑚)𝑇𝐻𝑤

𝑟𝑒𝑚 is non-singular and positive definite 

[23]. Since the matrix is singular, SVD is still used in 

this method. The 𝐻𝑛𝑢𝑙 matrix is used to replace the 𝑈 

matrix (SVD result matrix) to obtain the transformation 

matrix 𝐺. The combination of the 𝐻𝑤
𝑑𝑖𝑓𝑓

 and 𝐻𝑏
𝑑𝑖𝑓𝑓

 

matrices in the third method is used to calculate the QR 

decomposition, where the 𝑄 matrix is needed to find the 

transformation matrix 𝐺. 

In the second method, subtraction of the last sample of 

each class is applied to the 𝐻𝑤 matrix. Similarly, in the 

third method, subtraction of the first sample of each 

class is applied to the 𝐻𝑤 matrix. It was not applied in 

the first method. It turned out that these treatments did 

not give better results for the Colon and TKI-resistance 

datasets. It means that NLDA using SVD gives the best 

results for these datasets. 

4. Conclusions 

In this paper, we discuss three NLDA models using 

different matrix decompositions, i.e., SVD, Cholesky 

decomposition, and QR decomposition. In particular, 

we compare the steps taken after obtaining the scatter 

matrix. The scatter matrix in NLDA with Cholesky and 

QR decomposition is treated almost the same. 

Experiments on two datasets have shown the 

effectiveness of the three NLDA methods. The SVD 

approach outperforms the others on this dataset in terms 

of accuracy and class separation in the visualization 

output of 77.8% for the Colon dataset and 98.8% for the 

TKI-resistance dataset. Future research is expected to 

develop variations of the NLDA method to improve 

accuracy and reduce overfitting on the Colon and TKI-

resistance datasets. 
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