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Abstract  

Earthquakes are a phenomenon that is still a mystery in terms of predicting events, one of which is the magnitude. As technology 

develops, there are many algorithms that can be used as approaches in earthquake forecasting. In the context of magnitude 

forecasting, the application of GaussianNB, Random Forest and SVM has the potential to reveal these patterns and 

relationships in the data. With the six main phases of this research, namely data acquisition, data preprocessing, feature 

selection, model training, forecasting result evaluation, and performance analysis. From these results we obtain, firstly that 

the GaussianNB model has a relatively simple and fast method in training its model. However, the weakness lies in the 

assumption of a Gaussian distribution which may not always suit the complex and diverse characteristics of earthquake data. 

Based on GaussianNB model, the model accurately predicts magnitude category 1 for 421 observations and magnitude 

category 2 for 33 observations. Meanwhile, the magnitude 3 and magnitude 4 categories did not produce accurate predictions 

from the model. Second, Random Forest, this method can increase accuracy and overcome the overfitting problem that occurs 

when forecasting magnitudes. In contrast to GaussianNB, it tends to result in models with greater complexity and require more 

time to compute. In our findings, we obtained an MSE value of 0.12 with an R2 score of -0.10, this indicates conditions that are 

less effective in explaining differences in test data. The third option is SVM, which has both benefits and drawbacks that must 

be taken into account. The capacity of SVM to separate data that has both linear and non-linear separation is one of its key 

advantages; nevertheless, the main drawback is that it is sensitive to hyperparameter adjustments. It is clear from the results 

of the algorithm comparison that SVM has more potential for earthquake forecasting, especially the linear SVM and polynomial 

SVM model. The accuracy of the standard SVM is 0.587, which indicates relatively low performance. Linear SVM obtained a 

very high accuracy of 0.998. Meanwhile, Polynomial SVM achieves perfect accuracy of 1.0. while RBF SVM has the same 

accuracy as standard SVM, namely 0.587. 
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1. Introduction  

Due to the potential for bodily harm and fatalities, 

earthquakes have long been a plague for people [1]. 

Consequently, in an effort to safeguard civilization 

from these possible risks, understanding and forecasting 

earthquakes is crucial [2]. The Flores maritime, a 

maritime region affected by the Flores Back Arc Trust 

and susceptible to seismic activity, is one of the regions 

vulnerable to earthquakes [3]–[6]. The Flores Sea 

Earthquake Data Catalog is a valuable data source that 

keeps records of earthquakes that occurred in this region 

[7]. One of the important parameters in earthquake 

forecasting is magnitude [8]–[10]. Magnitude is a 

measure of the size of the energy released by an 

earthquake and can reflect the level of potential danger 

caused [11]–[13]. In this research, we focus on 

forecasting earthquake magnitude categories in the 

Flores Sea using various approaches, including 

Gaussian Naive Bayes (GaussianNB), Random Forest, 

and Suppot Vector Machine (SVM). This method 

belongs to a family of machine learning algorithms that 

have proven effective in many forecasting cases [14]–

[16]. 

In the context of magnitude forecasting, the application 

of GaussianNB, Random Forest and SVM has the 

potential to reveal hidden patterns and relationships in 

the data [17], [18]. By utilizing attributes such as 

earthquake location, depth and time, we hope to be able 

to predict magnitude categories with a higher degree of 

accuracy. This will be very useful in making decisions 

regarding risk mitigation and disaster response 

preparation in the Flores Sea area. In addition, a study 

of forecasting earthquake magnitude categories in the 

Flores Sea using this algorithm can help in a deeper 

understanding of seismic patterns in this region, as well 
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as in developing better forecasting models in the future 

[2]. 

This research can also be an initial step in applying 

machine learning technology for earthquake forecasting 

purposes in Indonesia. With advances in technology 

and increasing availability of data, machine learning 

algorithms have great potential to help understand and 

predict earthquake behavior more efficiently and 

accurately [19]–[22]. The challenges faced in 

earthquake forecasting involve various aspects, 

including the natural complexity and uncertainty 

inherent in this geological phenomenon. Therefore, it is 

necessary to carry out careful validation and evaluation 

of the forecasting results to ensure the quality and 

reliability of the resulting model [23]–[25]. In the 

context of disaster mitigation, magnitude category 

forecasting can be an invaluable tool in identifying 

areas at high risk of earthquakes of significant intensity. 

With this information, authorities can take preventive 

action, such as improving earthquake-resistant 

infrastructure, preparing evacuation plans, and 

educating the public regarding emergency measures in 

the face of earthquakes. 

2. Research Methods 

Based on the Flores Sea Earthquake Data Catalog, this 

research uses algorithms, GaussianNB, Random Forest 

and SVM. The six main phases of this research are data 

acquisition, data preprocessing, feature selection, 

model training, forecasting results evaluation, and 

performance analysis [2], [26]. First, we collected 

information about earthquakes that have occurred in the 

region from the Earthquake Data Catalog, which 

contains important details such as epicenter location, 

depth, time of occurrence, and magnitude. Complete 

catalogue data is presented in Table 1.

Table 1. Catalogue Data 

No Latitude Longitude Depth MagType Magnitude 

0 -8,6071 121,6032 183,417 mb 4,5 

1 -8,2739 121,8694 202,54 mb 4 

2 -7,2034 120,3696 577,909 mb 4,3 

3 -7,7762 122,5902 289,691 mb 4,3 
4 -8,8323 122,5431 118,504 mb 4,1 

… … … … … … 

1526 -8,349 122,5642 33 mL 4,9 
1527 -8,6223 121,9686 13,3 mb 5,7 

1528 -8,4969 122,4823 33 mb 6 

1529 -8,475 121,9023 27,7 mw 7,4 
1530 -8,5 121,9 33 mL 5,1 

 

The data is then continued in the process of training and 

evaluating forecasting models using GaussianNB, 

Random Forest and SVM. The reliability of predictions 

is highly dependent on the availability of appropriate 

and representative data [27], [28]. The next stage is data 

cleaning, to avoid invalid values. This method is 

important to ensure the correctness of the data used for 

model training and evaluation. The data scale will also 

be normalized to ensure that the attributes have the 

same influence on model construction [29]–[31]. 

The next stage is feature selection. The features used in 

this research are latitude, longitude, depth, magnitude, 

and magnitude category encoded data. In an effort to 

increase the efficacy and accuracy of the model, only 

the characteristics that are most relevant and have a 

significant impact on the quantity category will be 

considered. For feature selection, correlation analysis or 

other feature selection techniques can be used as an 

important stage of this research. Next, the model 

instruction stage is carried out and then concluded. 

Using clean data and relevant attributes, training data 

and test data will be separated into two categories. 

Using the training data, the GaussianNB, Random 

Forest and SVM models will begin the training process, 

with characteristics serving as features and quantity 

categories serving as labels. For a model to accurately 

predict the future, it must be taught to recognize and 

learn new data patterns [32]. After training the model, 

the predicted results are then subjected to an evaluation 

process. These models will be evaluated using test data 

they have never encountered before. Evaluation is 

based on a comparison between the model's predicted 

quantity categories and the actual labels from the test 

data. Accuracy, precision, recall, and F1 score will be 

used to compare the effectiveness of the three 

approaches for predicting earthquake magnitude 

categories. Using performance analysis, the advantages 

of the two forecasting systems are then contrasted and 

evaluated. The results of this performance analysis will 

provide an idea of how effective each technique is at 

classifying earthquakes in the Flores Sea area. By 

combining evaluation results and performance analysis, 

this study is expected to contribute to the development 

of more accurate and effective earthquake forecasting 

methods. The complete research flow is presented in 

Figure 1
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Figure 1. Research flow 

3. Results and Discussions 

The Gaussian Naïve Bayes (NB) Classifier is a simple 

probability classification technique that refers to the 

Bayesian Theorem [33]. The theorem states that the 

probability of an event occurring is calculated by 

multiplying the intrinsic probability (estimated using 

currently available data) by the probability of the same 

event occurring again in the future (based on historical 

knowledge). Statistical techniques for drawing 

inductive conclusions about classification problems 

[34]. The accuracy results of the Naive Bayes 

classification are good and consistent. However, if 

features and data parameters are added, Naive Bayes 

generates a number of circumstances that will result in 

poor accuracy scores. Since the data used in this study 

was numerical, you can use the Probability Density 

Function (PDF) function to calculate the class 

probability values. 

In Formula 1, Bayes' theorem is shown. while Formula 

2 displays the Gaussian NB calculation method. 

𝑃(ℎ|𝑥) =
𝑝(𝑥|ℎ)𝑝(ℎ)

𝑝(𝑥)
                              (1) 

𝑃(𝑥) =
1

2√2𝜋
𝑒
−
(𝑥−𝜇)2

2𝜎2                               (2) 

The GaussianNB method in predicting earthquake 

magnitude categories in the Flores Sea region has 

succeeded in showing satisfactory accuracy. This is 

influenced by a variety of attributes and high-quality 

data representation. The speed with which GaussianNB 

can solve multi-class problems makes it a valuable tool 

for forecasting categories of quantities at various levels 

[35]. This model uses different probabilities to 

determine classification, and is easier to understand. 

Even when the forecasting results show satisfactory 

performance, there is still room for improvement [36]. 

This is shown in the results of the confusion matrix 

presented in Figure 4. 

A confusion matrix is a table that shows the extent to 

which the model correctly and incorrectly identifies 

each category. The algorithm results show that the 

confusion matrix provided examines four categories of 

magnitude, namely 1 (minor), 2 (moderate), 3 (Strong), 

and 4 (Major). The main diagonal of the confusion 

matrix represents the number of accurate predictions, 

while the other diagonal represents the number of 

inaccurate predictions. Based on these results, the 

model accurately predicts magnitude category 1 for 421 

observations and magnitude category 2 for 33 

observations. Meanwhile, the magnitude 3 and 

magnitude 4 categories did not produce accurate 

predictions from the model, because none of the 

categories contained accurate predictions. According to 

these results (figure 3), the model works well in 

predicting quantities 1 and 2, but still has difficulty 

distinguishing quantities 3 and 4. This can be caused by 

uneven data distribution between categories or 

variations in attribute characteristics of each category. 

To improve model performance, additional analysis of 

variables that influence forecast accuracy for each 

category is required. Additionally, using data mining 

techniques or selecting more complex variables can 

help improve prediction accuracy. The complete 

classification report is presented as follows. 

Classification Report: 
               precision    recall  f1-score   support 
 
       Minor       0.00      0.00      0.00         1 
    Moderate       0.92      1.00      0.96       421 
      Strong       0.00      0.00      0.00        33 
       Major       0.00      0.00      0.00         5 
 
    accuracy                           0.92       460 
   macro avg       0.23      0.25      0.24       460 
weighted avg       0.84      0.92      0.87       460 

 

Start IRIS Database Data analysis Data Selection
Data 

Preprocessing

Transformation 

Data

Random Forest

GaussianNB

Validity test

Application 

implementation

ConclusionFinish

Support Vector 

Machine



Adi Jufriansah, Azmi Khusnani, Sabarudin Saputra, Dedi Suwandi Wahab 

Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol. 7 No. 6 (2023)  

DOI: https://doi.org/10.29207/resti.v7i6.1495 

Creative Commons Attribution 4.0 International License (CC BY 4.0) 

1442 

 

 

The findings of the classification report provide a more 

comprehensive picture of how well the GaussianNB 

model performs in predicting various earthquake 

magnitude categories in the Flores Sea region. The 

classification report contains evaluation data for each 

magnitude category, such as precision, recall, and f1-

score, in addition to the model's overall accuracy score. 

Minor, Moderate, Strong, and Major are the four 

magnitude categories tested in these results. Precision 

refers to the accuracy of the model in predicting the 

actual magnitude category. Recall (sensitivity) 

measures how well the model can recognize and 

recognize existing categories of quantities. F1-score 

represents the harmonic mean of recall and precision. 

With a precision of 0.92 and a recall of 1.00, the 

categorization report findings demonstrate the model's 

strong predictive ability for medium-sized categories. 

In other words, the model is quite adept at identifying 

and predicting moderate magnitude earthquakes. The 

high f1 value of this category of 0.96 can serve as proof 

of the GaussianNB model. This is presented in Figure 

4. 

In the small, strong, and large magnitude categories, the 

lack of precision and recall for the three categories 

indicates that the model is unable to accurately predict 

these categories. The F1 scores for the Small, Strong, 

and Major Magnitude categories are also zero, 

indicating that the model has difficulty distinguishing 

between earthquakes of these magnitudes. Additionally, 

the overall accuracy rating of this model is 0.92, 

indicating that it can effectively predict 92% of the test 

data used. The accuracy is quite high, but given the 

subpar performance in certain magnitude categories, 

these results require further investigation. In fact, to 

improve model performance, additional research needs 

to be carried out on variables that influence prediction 

accuracy in low-performing categories. It is also 

possible to increase forecasting accuracy by using data 

mining strategies or by selecting features with a higher 

level of complexity. The complete forecasting results 

for the magnitude category are presented in Figure 2. 

  
(a) (b) 

Figure 2. (a) Actual Magnitude Category, (b) Predicted Magnitude Category 

 
Figure 3. Actual magnitude category vs predicted magnitude 

category 

 

 
Figure 4. F1 Score by Magnitude Category 
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Li et. al., [37] claims that the Random Forest (RF) 

classifier is an ensemble classifier that predicts using a 

set of CARTs. Using bagging techniques, a portion of 

the training samples are taken to produce a tree. This 

implies that some samples may be selected only once, 

while others may be selected multiple times (figure 

1(a)). One-third of the samples referred to as ready-to-

use samples are used in the cross-validation procedure 

to estimate the performance of the resulting Random 

Forest model, while the remaining two-thirds of the 

samples are referred to as in-bag samples used to train 

the tree (Figure 1(a)). 

Out-of-bag (OOB) error is the name given to this error 

estimate. Each tree is created independently, without 

any pruning, and each node is divided using a randomly 

selected, user-defined number of features. This 

approach produces trees with low bias and high 

variance by expanding the forest to a user-specified 

number of trees (Ntree) [38]. The class assignment 

probabilities determined by each resulting tree are then 

averaged (using the arithmetic mean) to determine the 

final classification. As a result, each tree built in the 

ensemble is compared with new input in the form of 

unlabeled data, and each tree votes for class members. 

Ultimately, the membership class with the most votes 

will be selected (Figure 1(b)).  

One crucial step in lowering the death toll is estimating 

when an earthquake will strike a certain location. Using 

the Random Forest Method is one efficient way to 

anticipate earthquakes. A modelling technique called 

Random Forest uses a number of decision trees 

combined to provide predictions. The benefit of 

Random Forest lies in its capacity to manage intricate 

correlations and exchanges across variables, along with 

its ability to surmount overfitting issues. Random 

Forest is also an efficient way to handle huge volumes 

of training data, may provide low error rates, and 

performs optimally in classification. It is also a useful 

method for guessing missing data. 

The following computational time required to create an 

Random Forest classification model is presented by 

Formula 3 

𝑇√𝑀𝑁𝑙𝑜𝑔(𝑁)                                             (3) 

M is the number of variables used in each split, N is the 

number of training samples, and T is the number of 

trees.

  
(a) (b) 

Figure 5. (a) Training phase, (b) Classification phase [38] 

 

Two evaluation measures, namely Mean Squared Error 

(MSE) and R2 Score (Coefficient of Determination), can 

be used to understand the predictions of the Random 

Forest algorithm [39]. Mean Squared Error, or MSE is 

a metric that measures how closely a model's 

predictions match the actual values [14]. The MSE 

value is determined by the average of the squared 

differences between the actual value and the predicted 

value of each test data, with the average of these 

squared differences functioning as the MSE value [40]. 
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he closer the MSE is to zero, the better, because it 

indicates that the model predictions are getting closer to 

the true value [41]. In our findings, we obtained an MSE 

value of 0.12008229856881615. This result shows that 

the Random Forest model predictions are quite close to 

the actual value. Meanwhile, the R2 score is a metric that 

evaluates how much variation in test data can be 

explained by the model [2]. The R2 value ranges from -

1 to 1. A value of -1 indicates that the model has weak 

predictive ability, while a value of 1 indicates that the 

model fully explains all the data variance. As shown by 

the R2 score using this model of -

0.10111866775704192, this indicates conditions that 

are less effective in explaining differences in test data. 

The MSE score calculation shows that the Random 

Forest model is quite good at predicting earthquake 

magnitudes in the Flores Sea region, although with 

some forecasting errors. Meanwhile, a low R2 score 

indicates that the model cannot adequately account for 

data variations. Errors in prediction can be caused by 

various factors, such as lack of associated features, 

maximum depth, and node separation criteria that can 

affect model performance [19]. Model performance can 

also be influenced by the quality and representativeness 

of the seismic data used in training and evaluation [42]. 

The accuracy and precision of the model can be 

improved with larger and more representative data sets 

[43]. In addition, a deeper examination of attribute 

characteristics and their relationships could improve 

model performance and clarify seismic patterns in the 

Flores Sea. The results of the Random Forest method 

show the potential to predict various earthquake 

magnitude classes in the Flores Sea region. The 

complete prediction results are presented in Figure 6. 

 

  
(a) (b) 

  
(c) (d) 

Figure 6. (a) Random Forest Regression Results, (b) Feature Importance Plot, (c) Residual Plot, (d) Actual vs Predicted

Training and test data, each consisting of multiple 

inputs, are needed for Support Vector Machine (SVM) 

classification. In the training data, each input has 

multiple properties in addition to one target value. 

Based on the attribute values, SVM generates a model 

that can forecast the test data's target value [44]. The 

predictor is represented by the symbol xi, the class by 

the symbol yi, which comprises two classes that are 

presumptively -1 and 1, and the support vector by the 

symbol w. Formula 4 expresses the hyperplane 

formulation for linear data. 

𝑦𝑖 = 𝑤. 𝑥𝑖 + 𝑏                                             (4) 

Using the Kernel function, which first converts a 2-D 

vector field into a 3-D vector, the hyperplane for non-

linear data is created. Non-linear predictors are simpler 

to separate in a 3-D vector space than in a 2-D vector 

field. Formula 5 expresses the hyperplane that is applied 

to non-linear data using the kernel function. 

𝑦𝑖 = 𝑤.𝐾(𝑥𝑖 , 𝑦𝑗 + 𝑏                                           (5) 

30% of the data is used as validation data during the 

training process, and 70% of the data is used as model 
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data. For a new input signal, the accuracy results of the 

classifier with the highest accuracy are used as 

predictors. Formula 6 can be used to determine the 

accuracy of the classifier model [15]. True positive, TN 

true negative, FP false positive, and FN false negative 

are indicated by the TP parameter. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝐹𝑁+𝑇𝑁
× 100%                                  (5) 

After Train-Validation Split, for training data, it is 

compared with test data, which is a significant amount. 

Two variables form the training set of independent 

variables and their magnitudes. Table 2 provides a 

comprehensive comparison of the accuracy of SVM 

algorithms. 

Table 2. Algorithm Accuracy 

Algorithm Accuracy 

Support Vektor Machine (SVM) 0.587 

Hyperparameter SVM  
1. SVM Linear 0.998 

2. SVM Polynomial  1.0 

3. SVM RBF 0.587 

 

The data illustrates the accuracy results of various SVM 

configurations, including SVM with standard settings, 

Linear SVM, Polynomial SVM, and RBF SVM. The 

accuracy of the standard SVM is 0.587, which indicates 

relatively low performance on this particular dataset. 

However, Linear SVM obtained a very high accuracy 

of 0.998, demonstrating its excellent ability to separate 

data linearly. Meanwhile, Polynomial SVM achieved a 

perfect accuracy of 1.0, which could indicate overfitting 

if tested on the same dataset as the training data. Finally, 

the RBF SVM has the same accuracy as the standard 

SVM, namely 0.587, which may imply that using the 

RBF kernel on this dataset does not provide a 

significant advantage. Selection of the appropriate 

SVM model and hyperparameters is critical, and cross-

validation needs to be performed to ensure that the 

model can generalize well on new data [15], [22], [26], 

[45]–[49]. In conclusion, Polynomial SVM has the best 

performance, but needs to be tested further to avoid 

overfitting, while Linear SVM also shows excellent 

performance in separating data linearly. 

4.  Conclusion 

Forecasting methods using GaussianNB, Random 

Forest, and SVM are three interesting approaches and 

can provide valuable insight in efforts to predict 

earthquake magnitude categories in the Flores Sea 

region. Each of these methods is part of a machine 

learning algorithm that has proven effective in various 

fields, including forecasting. However, each has its own 

characteristics and advantages. First, GaussianNB is a 

method based on Bayes' Theorem with the assumption 

that attributes have a Gaussian distribution. This 

method is relatively simple and fast in model training. 

However, the weakness lies in the assumption of a 

Gaussian distribution which may not always suit the 

complex and diverse characteristics of earthquake data. 

Second, Random Forest is an ensemble algorithm that 

works by combining several decision trees. This allows 

this method to increase accuracy and overcome the 

overfitting problem that often occurs in machine 

learning models. However, Random Forest has a 

tendency to increase model complexity and longer 

computing time compared to GaussianNB. Third is 

SVM which has a number of advantages and 

disadvantages that need to be considered. One of the 

main advantages of SVM is its ability to separate data 

that has both linear and non-linear separation. This 

happens because SVM allows the use of various 

kernels, such as linear, polynomial, and RBF kernels, 

which allow SVM to address various types of 

classification problems. Additionally, SVM also has the 

potential to prevent overfitting if hyperparameters are 

adjusted correctly and cross-validation is performed 

well. In particular, the Polynomial SVM configuration 

can achieve very high accuracy, which is useful in 

classification cases that require high precision. On the 

other hand, SVM has several disadvantages that need to 

be considered. One of its main drawbacks is sensitivity 

to hyperparameter settings. Choosing the right 

hyperparameters can be a complex and time-consuming 

task. Additionally, SVM can be computationally 

intensive, especially on large datasets, requiring 

significant computing time to train the model. SVM 

may also be inefficient if used on very large datasets 

because it requires large amounts of storage. 

Additionally, SVMs may not handle highly imbalanced 

data well without special treatment such as the use of 

class weights or oversampling/undersampling 

techniques. So, the use of SVM has the potential to 

provide good results in a variety of situations, but users 

must be careful in choosing the right configuration, 

considering the size of the dataset, and dealing with 

class imbalance. Cross-validation and careful 

hyperparameter selection are important to maximize 

SVM performance in a variety of classification tasks. 
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