
Accepted by editor: 18-05-2021 | Final Revision: 24-06-2021 | Online Publication: 26-06-2021

584

Accredited by National Journal Accreditation (ARJUNA) Managed by

Ministry of Research, Technology, and Higher Education, Republic Indonesia with Second Grade (Peringkat 2, Sinta 2)

since year 2017 to 2021 according to the decree No. 10/E/KPT/2019.

Published online on the journal’s webpage: http://jurnal.iaii.or.id

RESTI journal
(System Engineering and Information Technology)

 Vol. 5 No. 3 (2021) 584 - 593 ISSN Electronic Media: 2580-0760

Identifying Emotion on Indonesian Tweets

using Convolutional Neural Networks

Naufal Hilmiaji1, Kemas M Lhaksmana2, Mahendra D Purbolaksono3

1,2,3School of Computing, Telkom University
1naufalhilmiaji@student.telkomuniversity.ac.id, 2kemasmuslim@telkomuniversity.ac.id,

3mahendradp@telkomuniversity.ac.id

Abstract

Identifying emotion out of text has become a research interest in natural language processing and other related fields,

especially with the advancement of deep learning methods for text classification. Despite some effort to identify emotion on

Indonesian tweets, its performance evaluation results have not achieved acceptable numbers. To solve this problem, this paper

implements a classification model using a convolutional neural network (CNN), which has demonstrated expected performance

in text classification. To easily compare with the previous research, this classification is performed on the same dataset, which

consists of 4,403 tweets in Indonesian that were labeled using five different emotion classes: anger, fear, joy, love, and sadness.

The performance evaluation results achieve the precision, recall, and F1-score at respectively 90.1%, 90.3%, and 90.2%, while

the highest accuracy achieves 89.8%. These results outperform previous research that classifies the same classification on the

same dataset.

Keywords: emotion, text classification, twitter, CNN.

1. Introduction

The rise of social media allows humans to express their

emotions by sharing their moments with their fellows.

Twitter is a social media with the highest user growth

each year. In Indonesia, Twitter has ranked fourth by the

most popular social media with at least seven million

active users by the end of March 2021 [1]. It provides

texts as their main feature to communicate, which are

called tweets. As the media of expression, tweets can

have various information, including human emotion.

Users often post tweets whenever they have something

emotional inside them. Likewise, Indonesian social

media users express themselves through Twitter [2].

After all, when compared to other social media that are

more concerned with visual images, on Twitter they can

be more expressive because they only focus on text or

tweets. Also, they mentioned that Twitter users tend to

be more open-minded. With these advantages, they will

never feel that when they wanted to reveal themselves,

other users would respond carelessly or harshly to their

remarks. The form of self-expression they do is what

they feel at the time, such as anxiety and deep thoughts.

Apart from that, at the same time, the emotions felt by

the users were also expressed via tweets. These issues

led researchers to find ways of gaining knowledge

through user tweets. The information gained is about

analyzing their sentiments, including their emotions.

Analyzing emotions is part of a psychology field,

although, in natural language processing (NLP), emotion

analysis or emotion mining has gone through years of

research. Analyzing emotions can be done by learning

the humans’ nonverbal communication, such as facial

expressions, body gestures, eye contact, touch, space,

and voice [3]. Therefore, professional human resources

in the field of psychology are needed to avoid

misinterpretation. Due to the demanding cost of hiring

psychologists, researchers are keen to find alternative

ways. Machine learning is one of the most promising

approaches for identifying emotion through text

classification. It learns from the data (supervised) and

predicts the corresponding classes of the text provided in

the data. In addition, the ability of a machine or computer

to understand emotions is critical to the success of

several other applications. For instance, in the domain of

customer service, Twitter gains prominence where

customers are expected to have quick responses. Text

emotion classification can be applied to monitor the

cyberbullying, depression, and desperation in social

media and prevent them from hurting themselves. It also

helps companies to create an automated system of

Naufal Hilmiaji, Kemas M Lhaksmana, Mahendra D Purbolaksono

RESTI Journal (System Engineering and Information Technology) Vol. 5 No. 3 (2021) 584 – 593

DOI: https://doi.org/10.29207/resti.v5i3.3137

Creative Commons Attribution 4.0 International License (CC BY 4.0)

585

classifying applicants’ personalities through texts to

seek talents who fit with their corporate culture in the

talent recruitment process [4].

According to the past study of tweets emotion analysis,

using Multinomial Naïve Bayes (MNB) with Laplace

Smoothing has obtained good performance results. It

combines MNB Classifier with multiple feature

extraction methods, such as n-grams, POS Tag, and

adjectives. Unigrams has the highest accuracy of 95%

for the tweets and 67% for the SMS [5]. The same

method was applied in another study of classifying

sentiment based on movie review dataset by combining

TF-IDF as the feature extraction method. It produced the

best accuracy of 85.16%, meanwhile using SVM

produced the best F1-Score of 84.9% [6, 7].

A study proposed the combination of two machine

learning methods CNN and SVM to construct a text

sentiment analysis model by using a Word2Vec as the

feature extraction. This study used the data from

NLPCC2014, an emotional analysis evaluation task data

set based on the deep learning method. It consisted of

10000 rows of training data, with 50% labeled as

positive and 50% labeled as negative. The testing data

consisted of 2500 rows, with 50% labeled as positive and

50% labeled as negative. The result shows positive

classes have an 89% F1-score, while negative classes

have 88.6% [8].

In 2019, a study proposed a CNN model architecture for

text sentiment classification using the English Movie

Review dataset. The model consisted of two consecutive

convolution layers. The first layer stores the local

information to the second layer, while the second layer

extracts features from the contextual information. They

have produced relatively high-performance results on a

relatively long text. The accuracy of binary and ternary

classification respectively 81% and 68% [9].

Research on emotion classification on Indonesian

Twitter data compared multiple machine learning

methods, such as Logistic Regression, SVM, and

Random Forest then combined them with multiple

feature extraction methods, such as Bag-of-Words

(BOW), Word2Vec (WV), and FastText (FT). The result

is acceptable, getting an F1-score of 68.39%. Finally,

they considered adding three more methods, Emotion

Lexicons, Orthographic, and POS Tag. The result is

slightly higher than the previous one, getting an F1-score

of 69.73%. They also provided a dataset called

“Indonesian Twitter Emotion Dataset” as the result of

this study [10].

A later study reproposed the method used in the [10] by

using Deep Learning LSTM-GloVe. Tweets are

tokenized once it enters the input layer into a sequence

of integers. The padding of zeros is added to match the

length of each tweet. The system will then build an

embeddings index to retrieve the index from the GloVe

dictionary. The parameters used for experiments are: (1)

Learning rate: 0.005 and 0.001, (2) Dropout: 0.25 and

0.5, (3) Optimizer: SGD and Adam’s. With the use of 50

epochs and 100 batch size, precision, recall, and F1-

score were obtained respectively at 33%, 38%, and 35%.

The accuracy of the model is 46% [11].

Based on the research by [10, 11], with the same dataset,

the Logistic Regression method leads the F1-score result

at 69.73%, significantly higher than the LSTM-GloVe

method. This may happen since deep learning methods

are created to model the distribution that underlies the

training data. All cases and possibilities are needed in the

training process to achieve state-of-the-art accuracy.

Therefore, deep learning methods often require a large

number of data, much more than conventional ones.

Meanwhile, both studies only used 4.403 rows of data.

In addition, the architecture of the model can also affect

the training performance.

Considering this research is using the deep learning

CNN method, our main reference is from [11]. However,

their results are still far below the average. The authors

stated that it is caused by underfitting. Although, it is

unclear the reason they allowed the model to underfit

when the learning process is being done. Therefore, the

purpose of this research is to optimize the deep learning

CNN method by implementing some experiments on

model architecture (e.g., hyperparameter tuning) to get

the highest possible performance results and to avoid

overfits and underfits. The results will then be compared

to [11] as the baseline of our model prediction.

2. Research Method

Figure 1. System Flowchart

Naufal Hilmiaji, Kemas M Lhaksmana, Mahendra D Purbolaksono

RESTI Journal (System Engineering and Information Technology) Vol. 5 No. 3 (2021) 584 – 593

DOI: https://doi.org/10.29207/resti.v5i3.3137

Creative Commons Attribution 4.0 International License (CC BY 4.0)

586

In this research, the method used is Deep Learning

Convolutional Neural Network (CNN). Figure 1 shows

the flow of the system used in this research represented

in a flowchart. The system received input data in CSV

format and will first undergo preprocessing. Afterward,

the data will be split into 70% training data and 30%

testing data. The percentages of the data splitting are

determined through experiments, and these values are

considered to be the best for this research. However,

having an excessive amount of training data will overfit

the model performance. Meanwhile, the smaller the

training data will be insufficient for the model to learn

through processes and will cause underfitting.

After the data split, the system will continue to build the

CNN model architecture and do the training process.

Lastly, the CNN model will then predict the classes of

every tweet in the test data and evaluate its performance

results. The evaluation methods used are accuracy,

precision, recall, and F1-Score. The CNN model will be

evaluated by comparing it to the baseline whether or not

it has surpassed them. If it failed to outperform them, the

model needs to be reconstructed by tuning the learning

rate, the hyperparameters, or using grid search method

to find the optimal layer configurations until it has

successfully produced higher results than the baselines.

2.1. Dataset

Figure 2. Dataset Class Distribution

The dataset used contains 4.403 rows of tweets that are

labeled using five emotion classes, anger, fear, joy, love,

and sadness provided by [10] in CSV format. 1 Each row

consisted of a tweet and its respective emotion label

separated by a comma (,). The first row is a header. For

a tweet with a comma inside the text, there is a quote

mark (" ") to avoid column separation. The tweets in this

dataset have been pre-processed using the following

criteria based on Table 1. Mentions have been replaced

with “[USERNAME]”, URLs have been replaced with

“[URL]”, and Numbers like phone number, invoice

number, and a courier tracking number have been

replaced with “[SENSITIVE-NO]”. However, these

1 https://github.com/meisaputri21/Indonesian-Twitter-Emotion-Dataset

unnecessary strings still need to remove completely from

the data, because it can lower the performance produced

by the CNN model due to the learning complexity.

Table 1. Preprocessing Criteria

Tweets Preprocessed

“Baca buku ini diawal

senyum, ditengah-tengah

senyum miris, diakhir

senyum pasrah. Nuhun bung
@someone”

“Baca buku ini diawal

senyum, ditengah-tengah

senyum miris, diakhir

senyum pasrah. Nuhun
bung [USERNAME]”

“sebagai supporter speak

bola gue ga suka barca, tapi

sebagai pecinta sepakbola

gue suka ini film, keren
https://example-url.com/”

“sebagai supporter speak

bola gue ga suka barca,

tapi sebagai pecinta

sepakbola gue suka ini
film, keren [URL]”

“Malam saya mau tanya

kenapa benefit saya

dibatalkan, saya bukan

dropshiper dan saya rasa
tidak ada aturan yang saya

langgar 1234xxx”

“Malam saya mau tanya

kenapa benefit saya

dibatalkan, saya bukan

dropshiper dan saya rasa
tidak ada aturan yang

saya langar [SENSITIVE-

NO]”

2.2. Data Preprocessing

Figure 3. Data Preprocessing

To enhance the data quality, data must be preprocessed

before getting into the training process. Data

preprocessing in Machine Learning refers to the data

mining technique of cleaning and organizing the raw

data to make it suitable for building and training machine

learning models. It is used to transform raw data into an

understandable and readable format. Figure 3 shows the

flowchart of the data preprocessing. The method used for

word-stemming is from [12]. PySastrawi is a simple

Python library to reduce inflected words in Indonesian

to their base form. Table 2 shows how PySastrawi

applied to Indonesian terms.

Table 2. Indonesian Word Stemming

Word Stemmed

memainkan (playing) main (play)

bercanda (joking) canda (joke)

terkagum (amazed) kagum (amaze)

In this research, we use a powerful Python tool for

developing and evaluating deep learning models called

Keras. Keras is a consistent and simple deep learning

API, running on top of TensorFlow – a flexible data

open-source flow-based programming model – designed

to minimize the number of user actions required for

1101
1017 997

649 637

0

200

400

600

800

1000

1200

anger happy sadness fear love

Dataset Class Distribution

Naufal Hilmiaji, Kemas M Lhaksmana, Mahendra D Purbolaksono

RESTI Journal (System Engineering and Information Technology) Vol. 5 No. 3 (2021) 584 – 593

DOI: https://doi.org/10.29207/resti.v5i3.3137

Creative Commons Attribution 4.0 International License (CC BY 4.0)

587

common use cases, and it provides clear and actionable

error messages [13, 14]. In the preprocessing part of the

system, Tokenizer from Keras will be applied to get

word indexes by tokenizing words inside text

documents, also to transform each text into a sequence

of integers. This sequence will be used for computation

inside the neural network since they were not designed

to understand the inputs that are in non-numeric format.

2.3. Convolutional Neural Network (CNN)

This section provides the details of our model. CNN is a

deep learning method that was initially used for

analyzing and classifying digital images. Its purpose was

to extract meaningful features of an image

convolutionally by moving the kernel on the convolution

layer through two-dimensional matrices [15]. Based on

this concept, it can also be applied for text through one-

dimension matrices. Figure 4 shows an image

representation of the proposed model architecture. It

consisted of an input layer consists of sequences of

integers, an embedding layer, a one-dimensional

convolutional layer, a pooling layer, a fully connected

layer, and an output layer consisted of five classes,

anger, fear, joy, love, and sadness. To get better

understandings of CNN, we will go through the

definition and the usage of every component that

constructs CNN models.

2.3.1. Embedding Layer

Keras offers an embedding layer that can be used for text

data on neural networks and it requires the data to be

integer encoded. The embedding layer works similarly

as a simple matrix multiplication that transforms words

into their corresponding word embeddings or turns

indexes into dense vectors of fixed size. Word

embedding can be regarded as textual features so that it

can be counted as a preprocessing step in more advanced

NLP tasks [16]. This layer can only be used as the first

layer in a model. The input data will be padded for each

sentence to create a fixed size of sequences. If the

sentence is too long, it will be trimmed to the maximum

length, and if it is too short, it will be padded by zeros to

match m. The embedding layer will receive these

sequences and create an embedding matrix within the

size of m × n, where m is the output dimension. It

consists of the correlation of each word index in every

tweet to the whole document. The input dimension m

should be equal to the number of unique vocabularies in

the data and the output dimension m is the size of the

vector space in which words will be embedded. It

determines the size of the output vectors from this layer

for each word. In our CNN model, the embedding layer

will learn along with the model itself rather than using

pre-trained word embedding models (e.g., Word2Vec).

It is initialized with random weights and will learn an

embedding for every word in the previously

preprocessed data. An embedding layer learns then tries

to find the optimal mapping of each of the unique words

to a vector of real numbers.

Table 3. Word Embedding

Sentence Embedding

“hope to see you soon” [1,2,3,4,5]

“Nice meeting you” [6,7,4,0,0] #zeros for padding

Table 3 shows how word indexes are assigned to each

unique word by using a one-hot encoding method from

Keras Tokenizer API. However, instead of using a large

amount of one-hot encoded vectors, an embedding layer

prefers to create an embedding matrix based on word

indexes to keep the size of each vector much smaller as

represented in Table 4.

Table 4. Embedding Index

Word Index Embedding

0 [1.2, 3.1, 2.5]

1 [0.1, 4.2, 1.5]

2 [1.0, 3.1, 2.2]

3 [0.3, 2.1, 2.0]

4 [2.2, 1.4, 1.2]

5 [0.7, 1.7, 0.5]

6 [4.1, 2.0, 4.5]

7 [3.1, 1.0, 4.0]

Assuming we want to train a CNN model, and Table 4 is

our training data, we should first specify our embedding

layer. The number of unique vocabularies from the data

is 8, so the input dimension m is 8, and 3 for the output

dimension n. During the training process of the CNN,

embedded vectors are getting updated and expecting that

similar meaning words will have similar representations

Figure 4. CNN Model Architecture

Naufal Hilmiaji, Kemas M Lhaksmana, Mahendra D Purbolaksono

RESTI Journal (System Engineering and Information Technology) Vol. 5 No. 3 (2021) 584 – 593

DOI: https://doi.org/10.29207/resti.v5i3.3137

Creative Commons Attribution 4.0 International License (CC BY 4.0)

588

in a multi-dimensional space as shown in Table 4. Once

the training has finished, the embedding layer will

produce a matrix with the shape of (8, 3) as the output.

2.3.2. Convolution Layer

Convolution is a linear operation that performs the

multiplication of inputs with a set of weights. Therefore,

a convolution layer was designed to have the ability to

apply such an operation to a sequence of input data and

a filter or a kernel to produce a dot product. A dot

product is the sum of a product of two sequences of

numbers that correspond to each other and always

resulting in a single value. As the layer convolves

through the m × n matrix with an arbitrary stride, it will

calculate the dot products of this matrix and filters (𝐹)
to create a feature map f and pass it to the next layer.

During the convolution process of calculating the dot

products, the feature map will gain values from it as the

process continues to the last filter. These values can vary

because the convolution layer naturally generates filters

as it trains the data, and they do not have fixed values.

2.3.3. Pooling Layer

A pooling layer is a layer that reduces input spatially by

using downsampling operations. The commonly used

method of a pooling layer is max pooling. This method

will take the maximum value for each patch of a feature

map resulted from the convolution layer. The result of

using a pooling layer is a summarized version of the

feature map. In Keras, there is another type of pooling

that is sometimes used called global pooling. In this

research, the pooling method used is global max pooling.

Instead of downsampling patches from the feature map,

a global pooling layer downsamples the entire feature

map to a single value. This would be the same as setting

the pooling size to the size of the input feature map.

2.3.5. Fully Connected Layer

A fully connected layer is simply feed-forward neural

networks which is an artificial neural network

connection where the connection between nodes does

not form a cycle [17]. The input to the fully connected

layer is the output from the pooling layer, which has

been flattened. After passing through the fully connected

layers, the final layer will then get probabilities of the

input being in an appropriate class.

2.3.6. Dropout

Small datasets have higher chances of causing overfits

when using CNN models. This issue may also affect the

lower performance of the model when the training

process has done. An approach is needed to reduce the

overfitting of every network and to average the

predictions of the model. A dropout comes to regularize

a fixed-size model by averaging predictions of the

hyperparameters used in a certain layer by weighting

each setting of its posterior probability given the training

data [18].

Dropout can be applied with most layers in a neural

network, whether it is a hidden or visible layer. During

the training process, some layers are dropped

temporarily across the connections. Dropout can noise

the training process by forcing layers to drop their nodes.

The dropout values are between 0 and 1. Assuming it is

specified to 0.5, it will force layers to drop 50% of their

nodes to reduce overfitting.

2.3.7. Regularization

Regularization is a technique of modifying the model

such that the model generalizes better. This will penalize

the weight matrices of the nodes in the network. L1 and

L2 are the most common types of regularization. It

updates the general cost function by adding another term

known as the regularization term. As a result, the weight

matrix value decreases because it assumes that an

artificial neural network with a smaller weight matrix

produces a simpler model. Hence, it will also reduce

overfitting to a great extent. In this research, the

regularizer used is the L2 type of regularization for the

experiment. L2 norm is represented by the term below

[15]:

Ω(𝑊) = 𝐿𝑜𝑠𝑠 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 +
𝜆

2
 × ∑||𝑊||

2
 (1)

Where the loss function used here is categorical cross-

entropy, considering the model has five output classes,

and the regularization parameter (𝜆) used is the

hyperparameter whose values are optimized for better

results and usually in logarithmic scale (10𝑛, 𝑛 < 1).

L2 regularization is also known as weight decay as it

forces the weights (𝑊) to decay towards zero, but not

exactly zero. Intuitively, the smaller weight reduces the

impact of hidden neurons. In this case, the hidden neuron

becomes negligible and the overall complexity of the

neural network is reduced. Less complex models usually

avoid modeling noise in the data, and therefore, there is

no overfitting.

2.3.8. Learning Rates

Learning rate is a hyperparameter that controls how

much the model should update the weights for every

epoch and often has a value in the range between 0.0 and

1.0. The learning rate may be the most important

hyperparameter when configuring neural networks [19].

It is required to analyze the appropriate value of learning

rates for better performance. The lower value of the

learning rate resulting the training process being longer

and have more epochs, while the higher value will faster

the learning process. The model will adapt more quickly

to the problem to get less training time. If the learning

rate is set too low, training will progress very slowly

because the model will make very few updates on the

Naufal Hilmiaji, Kemas M Lhaksmana, Mahendra D Purbolaksono

RESTI Journal (System Engineering and Information Technology) Vol. 5 No. 3 (2021) 584 – 593

DOI: https://doi.org/10.29207/resti.v5i3.3137

Creative Commons Attribution 4.0 International License (CC BY 4.0)

589

weight on your network. However, a learning rate that is

too high causes the model to obtain the solutions too

quickly, so that it may skip the important features meant

to be acquired.

2.3.9. Adam Optimizer

Adam Optimizer is an adaptive stochastic learning rate

optimization algorithm designed for deep neural

networks by computing individual learning rates for

different parameters. It combined the Adaptive Gradient

Algorithm and Root Mean Square Propagation. Both

methods are using the same concept of stochastic

optimization. Stochastic optimization is the process of

optimizing an objective function in the presence of

randomness. Adam optimizer handles the sparse

gradients on noisy datasets efficiently by using a smaller

amount of memory and it can be an advantage for this

research, considering we use a small amount of data but

with a more complex CNN model.

2.4. Model Testing

Ensuring the model has good performance is needed to

get a better understanding of the problems. Therefore, it

needs to be tested by doing predictions. The previously

trained model will predict the labels from the test data.

In this research, the methods used to evaluate the

predictions are accuracy, precision, recall, and F-

Measure. These methods are measured based on a

confusion matrix represented in Table 5.

Table 5. Confusion Matrix

Actual

Class (+)

Actual

Class (-)

Predicted

Class (+)
TP FP

Predicted

Class (-)
FN TN

Accuracy is a method that is often used in research

related to binary classification and/or multiclass

classification [20]. Accuracy is the number of correctly

predicted data points out of all the data points. It can be

calculated by dividing the number of correct predictions

by the number of total predictions as follows:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 (2)

On the formula above, TP is represented as True

Positives, where the model correctly predicts the

positive classes. TN means True Negatives, which means

the model has correctly predicted negative classes.

Meanwhile, FP and FN stand for False Positives and

False Negatives. These denote that the model has

incorrectly predicted both positive and negative classes.

Precision is used to measure the positive class predicted

upon the probability it is correct. When the model

predicts positive, precision will calculate how often it

predicted positive class correctly. Recall is the

probability of positive labels labeled as positive. These

methods can be calculated by using the following

formulas:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3)

𝑅𝑒𝑐𝑎𝑙𝑙 (𝑅) =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(4)

The last evaluation method is F-Measure. F-Measure

provides a single score that balances both the concerns

of precision and recall in one number. It is the ratio of

the number of positive classes that are predicted to be

correct with the number of all samples that should be

predicted as positive. This method is commonly used for

evaluating many kinds of machine learning models. The

F-Measure can be calculated by using the following

formula.

𝐹 =
2𝑃𝑅

𝑃 + 𝑅
 (5)

From the formula above, the F-Measure was produced

by having a trade-off between Precision and Recall. If

the model is optimized to increase one and disfavor the

other, the harmonic mean quickly decreases. However,

when both precision and recall are equal or have slightly

different values, the F-Measure will surely have a great

result. With high precision but low recall, models are

extremely accurate, but it misses a significant number of

instances that are difficult to classify. This may not be

very useful for the evaluation process.

3. Result and Discussion

3.1. Training Process

Based on Figure 4, the input layer receives a sequence of

integers from the previously preprocessed data. The data

consists of 14,648 unique vocabularies and a maximum

of 83 words for a whole text document. The embedding

layer takes every unique vocabulary as the input

dimension, 128 output dimensions, and 83 maximum

input lengths. Since the embedding layer is the first layer

of the model, it needs to have more data from the input

layer for the embedding matrix in terms of better

learning processes. As a result, the model will have more

time to learn, but the performance results will be

significantly higher. Therefore, the more input

dimension to have, the higher the performance of the

CNN model.

Output from the embedding layer goes to the

convolution layer. The convolution layer consists of 128

filters as well as 5 kernel sizes. These numbers were

determined by tuning them repeatedly over time and

have produced the best performance results. The

activation function used here is Rectified Linear Unit

(ReLU) that will produce the output directly if it is

positive, otherwise, it produces zeros. The usage of

Naufal Hilmiaji, Kemas M Lhaksmana, Mahendra D Purbolaksono

RESTI Journal (System Engineering and Information Technology) Vol. 5 No. 3 (2021) 584 – 593

DOI: https://doi.org/10.29207/resti.v5i3.3137

Creative Commons Attribution 4.0 International License (CC BY 4.0)

590

ReLU helps to prevent the exponential growth in the

computation requirements to the CNN operations. As the

CNN scales in size, the computational cost of adding

extra ReLUs increases linearly.

The output of the convolution layer will then undergo

pooling. The commonly used pooling method is max

pooling. In this CNN model, the global max-pooling

layer downsamples the input representation by taking the

global maximum value over the time dimension. Before

getting into the fully connected layer, the dropout is

added to the network. In this layer, the data will then be

randomly dropped out 50% of the neurons during the

training process to reduce overfitting and improve

generalization errors.

The fully connected layer predicts whether the input data

belongs to the appropriate class of the five emotion

classes and it used the Softmax activation function. In

the training process, the CNN model will go through

epochs and set 0.0003 for the learning rate of Adam

Optimizer. The loss function used is categorical cross-

entropy, considering our model classifies five emotion

classes. As the model fit, the early stopping with the

patience value of 2 will monitor the validation losses.

Whenever the validation loss keeps improving, it will

gain more epochs. Otherwise, it will stop the training

right away.

3.2. Text Emotion Classification

Figure 5. Multiclass Confusion Matrix

The predictions are done by classifying tweets into five

classes. The confusion matrix in Figure 5 shows the

correctly predicted tweets among their classes. 22.8% of

the tweets are correctly classified as anger, 20.5% as

happy, 19.5% as sadness, 13.5% as love, and 13.3% as

fear. The remaining 10.4% of tweets are misclassified.

Table 6 shows the evaluation results of each predicted

class. These results are base on the confusion matrix in

Figure 5. The evaluation methods used are accuracy,

precision, recall, and F1-score. In Table 6, the highest

precision score is love class, by 93.6%. Meanwhile, the

fear class has the highest score of recall by 95.3%. The

sadness class has the lowest results of all. It indicates the

system had more difficulties in classifying tweets to this

class. It may be caused of the trends of tweets labeled as

sadness are too complicated for the model to learn.

Nevertheless, the results are not significant in terms of

score interval compared to the other classes, so the

model would still get high overall performance results.

Table 6. Classification Report

classes precision recall f1-score

anger 0.913 0.895 0.904

happy 0.890 0.895 0.893

sadness 0.863 0.862 0.893

love 0.936 0.910 0.923

fear 0.903 0.953 0.927

micro-avg 0.898 0.898 0.898

macro-avg 0.901 0.903 0.902

Table 7. Comparison of Previous Studies

classes precision recall f1-score

Logistic

Regression [10]
0.720 0.682 0.697

LSTM-GloVe [11] 0.330 0.380 0.350

Our CNN Model 0.901 0.903 0.902

According to the definitions, precision calculates the

number of positive predictions made correctly, and

recall measures the number of correct positive

predictions made from all potential positive predictions

that could be made. The results show that the CNN

model is more likely tends to identify a tweet as love of

all tweets that have love class. Meanwhile, recall tells us

that the model has the highest probability to correctly

predict a tweet as fear over the other classes upon all

tweets that had classified. These cases occur because of

the dependency on keywords inside a tweet that help the

CNN model to predict tweets to their appropriate classes.

The ambiguity of keywords may affect the model to

predict because the occurrences of them are rarely to be

found in the whole document. People are often using

autocorrection features on their devices before posting

their tweets. The clearer a tweet is in terms of contexts,

the easier the model recognizes it. However, assuming

that the tweet consisted of unknown abbreviations or

words, they may also affect the calculation. If they exist,

then the model will try to learn from the other correlated

and the adjacent words to calculate the probability

instead of focusing on them. Table 8 shows how the

representation of the keywords of a tweet affecting the

predictions.

Based on Table 8, we may see that the first tweet has two

keywords, which are aman (safe) and nyaman (cozy).

Meanwhile, the second tweet has longer words to

describe what emotion would fit the tweet. The term

“safe” and “cozy” are straightforward indicating love by

their means.

Naufal Hilmiaji, Kemas M Lhaksmana, Mahendra D Purbolaksono

RESTI Journal (System Engineering and Information Technology) Vol. 5 No. 3 (2021) 584 – 593

DOI: https://doi.org/10.29207/resti.v5i3.3137

Creative Commons Attribution 4.0 International License (CC BY 4.0)

591

Table 8. Keywords Representation

Tweets Keywords Class

"Setiap kesempatan yg

pernah hadir tuk dapat

membuatmu selalu merasa

aman dan nyaman, kini
jadi suatu kehormatan yg

pernah didapat."

Translated:

“Every opportunity that

has ever been present to

always feel safe and
comfortable, has now

become an honor that has

been obtained before.”

aman (safe),

nyaman

(cozy)

love

“Pulang udah H-4 lebaran

dilema sekali. Seperti tidak

bisa melakukan apa2 di

rumah sebelum lebaran.

Buka puasa bareng cuman
3 hari sama keluarga

begitu juga sahur”

Translated:

“Going home on D-4 of

Eid is such a dilemma. It is

like I cannot do anything at

home before D-day. To
break my fast with family

within only 3 days as well

as having a pre-dawn

meal”

tidak bisa

melakukan

apa2 di

rumah
(cannot do

anything at

home)

sadness

Hence, the precision score of love class is higher than

other classes. Meanwhile, on the second tweet, there are

no individual keywords that can be observed. Preferably,

the model uses word phrases to recognize the

appropriate class. Referring to these cases, we as human

beings can be easily predicting both tweets to their

classes. However, the system would need to learn from

the trends of the whole document before predicting. The

same technique may also apply to fear class

Figure 6 shows how the confusion matrix from Figure 5

is pooled by splitting it into the matrix of each class. The

micro-average method can be calculated by using the

summed version of the multiclass confusion matrix in

Figure 5, called pooled confusion matrix (Figure 6) [22].

Meanwhile, the macro-average method is calculated by

averaging precision, recall, and F1-score on every class.

The micro-averaged precision, recall, and F1-score were

obtained by the same value of 89.8%. Meanwhile, the

macro-averaged precision, recall, and F1-score were

obtained respectively 90.1%, 90.3%, and 90.2%. Since

the pooled confusion matrix has been created, the

accuracy can be calculated by using the formula (2),

resulting in 89.8% accuracy.

In this research, the CNN model will learn the trends

through the embedding layer. Since tweets are

transformed into a sequence of integers, each vocabulary

in every tweet will be paired based on their adjacent and

correlated word indexes and calculate the probability of

the occurrences of the whole document. It produces the

embedding matrix, which will then be used for the model

to classify tweets based on their language structure in

Indonesian.

3.3. Discussion

A study by [10] using Logistic Regression tends to be

more suitable for classifying a small amount of data.

Some experiments on feature extractions were applied to

the model. However, their results from the proposed

classifier model are not quite enough to fully meet the

research standard. In the other study by [11], they had

obtained very low-performance results by using the

LSTM-GloVe method. They have also attempted

experiments by applying multiple hyperparameter

combinations, including lowering the learning rates,

adding dropouts, and changing the optimizers, but still

Figure 6. Pooled Confusion Matrix

Naufal Hilmiaji, Kemas M Lhaksmana, Mahendra D Purbolaksono

RESTI Journal (System Engineering and Information Technology) Vol. 5 No. 3 (2021) 584 – 593

DOI: https://doi.org/10.29207/resti.v5i3.3137

Creative Commons Attribution 4.0 International License (CC BY 4.0)

592

could not optimize the LSTM model performance

results. It may occur because of the incompleteness of

data preprocessing on the raw data since it only

undergoes preprocessing inside the layers in the LSTM

model that causes the lack of data quality. For instance,

they had missed word-stemming, which is a necessary

part of data preprocessing. It converts every term into its

base form. In this research, word-stemming played an

immense role in the data preprocessing process that

helps the model to more easily recognize each term in

base form.

Based on the analysis, both researches had experienced

difficulties in optimizing their models. In the first

research, the Logistic Regression method worked more

effectively than the succeeding. However, despite

having done some experiments on the model, the results

are still low. This issue may indicate that the base model

classifier is the key to getting high-performance results.

In the research by [11], the LSTM method encountered

very low performance. Since LSTMs are deep learning-

based models, the quantity of the data matters. The more

data used, the better the performance. Although, the data

used only consisted of 4.403 rows of data which is

insufficient for deep learning models to learn. In another

way, the model complexity can improve the learning

process despite having various amounts of data. For

instance, adding more nodes to the layers will help the

model extracting more information from the data. This

information is used as blueprints when the model starts

to predict.

This research compares the methods used in the previous

studies to our CNN method using the same dataset

provided by [10], as represented in Table 7. Due to the

limitations of the data used, it is necessary to add more

nodes within layers to gather more information from the

data through the networks. However, our CNN model

implements different feature extraction methods. The

methods used are within the CNN layers, e.g., word

embeddings in the embedding layer. The embedding

layer forms the data into the embedding matrix used for

the model to digest its contexts. In the training process,

the embedding matrix is used for calculating the

adjacency and the correlation of each term in every tweet

within a whole document. Once the training is done, the

model predicts the data and evaluates the results. The

model produced great final results and showed

significant differences in terms of model performance.

4. Conclusion

In this research, the CNN method is implemented to

identify emotion by classifying tweets in Indonesian by

setting the parameter combinations, such as adding 50%

dropout, applying L2 regularization, and lowering the

Adam Optimizer’s learning rate to 0.0003. The

performance results are pretty high, considering this

research used a small dataset. The precision, recall, and

F1-score were obtained respectively 90.1%, 90.3%, and

90.2%, while the accuracy is 89.8%. It is worth

mentioning that the parameter combinations played a

huge role in optimizing the model.

CNN works more effectively on a comprehensive user-

generated suite of tasks and datasets (e.g., user reviews)

in a much faster computation and has shown better

performance results compared to the LSTMs [23, 24].

Therefore, CNN is more suitable and applicable for

datasets consist of tweets considering they are user-

generated texts. In this research, the CNN method has

shown significant differences in performance results that

outperformed LSTM. Hence, it is concluded that CNN

has proven to be a better method to use for cases of text

classification.

Reference

[1] Statcounter, "Statcounter GlobalStats," Statcounter, March
2021. [Online]. Available: https://gs.statcounter.com/social-

media-stats/all/indonesia. [Accessed 22 April 2021].

[2] M. Zaskya, A. Boham and L. J. H. Lotulung, "Twitter Sebagai
Media Mengungkapkan Diri Pada Kalangan Milenial," ACTA

DIURNA KOMUNIKASI, vol. 3, 2021.

[3] A. Mehrabian, Nonverbal communication, Routledge, 2017.
[4] N. Y. Hutama, K. M. Lhaksmana and I. Kurniawan, "Text

Analysis of Applicants for Personality Classification Using

Multinomial Naı̈ve Bayes and Decision Tree," JURNAL
INFOTEL, vol. 12, p. 72–81, 2020.

[5] J. K. Rout, K.-K. R. Choo, A. K. Dash, S. Bakshi, S. K. Jena

and K. L. Williams, "A model for sentiment and emotion
analysis of unstructured social media text," Electronic

Commerce Research, vol. 18, p. 181–199, 2018.

[6] J. W. Simanullang, A. Adiwijaya and S. Al Faraby, "Klasifikasi
Sentimen Pada Movie Review Dengan Metode Multinomial

Naı̈ve Bayes," eProceedings of Engineering, vol. 4, 2017.

[7] M. Yulietha, S. A. Faraby, W. C. Widyaningtyas and others,
"An implementation of support vector machine on sentiment

classification of movie reviews," in Journal of Physics:

Conference Series, 2018.
[8] Y. Chen and Z. Zhang, "Research on text sentiment analysis

based on CNNs and SVM," in 2018 13th IEEE Conference on

Industrial Electronics and Applications (ICIEA), 2018.
[9] H. Kim and Y.-S. Jeong, "Sentiment classification using

convolutional neural networks," Applied Sciences, vol. 9, p.

2347, 2019.
[10] M. S. Saputri, R. Mahendra and M. Adriani, "Emotion

classification on indonesian twitter dataset," in 2018

International Conference on Asian Language Processing
(IALP), 2018.

[11] A. Larasati, B. Harijanto and F. Rahutomo, "Implementasi Deep

Learning Untuk Deteksi Ekspresi Emosi Pada Twitter," in
Seminar Informatika Aplikatif Polinema, 2020.

[12] H. A. Robbani, "PySastrawi," 28 September 2018. [Online].

Available: https://github.com/har07/PySastrawi.

[13] F. Chollet and others, Keras, 2015.

[14] M. Abadi and others, TensorFlow: Large-Scale Machine

Learning on Heterogeneous Systems, 2015.
[15] Goodfellow, Y. Bengio, A. Courville and Y. Bengio, Deep

learning, vol. 1, MIT press Cambridge, 2016.

[16] Y. Li and T. Yang, "Word embedding for understanding natural
language: a survey," in Guide to big data applications, Springer,

2018, p. 83–104.
[17] A. Zell, N. Mache, R. Hübner, G. Mamier, M. Vogt, M.

Schmalzl and K.-U. Herrmann, "SNNS (stuttgart neural

network simulator)," in Neural network simulation
environments, Springer, 1994, p. 165–186.

Naufal Hilmiaji, Kemas M Lhaksmana, Mahendra D Purbolaksono

RESTI Journal (System Engineering and Information Technology) Vol. 5 No. 3 (2021) 584 – 593

DOI: https://doi.org/10.29207/resti.v5i3.3137

Creative Commons Attribution 4.0 International License (CC BY 4.0)

593

[18] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever and R.

Salakhutdinov, "Dropout: a simple way to prevent neural

networks from overfitting," The journal of machine learning

research, vol. 15, p. 1929–1958, 2014.
[19] Y. Bengio, R. Ducharme, P. Vincent and C. Janvin, "A neural

probabilistic language model," The journal of machine learning

research, vol. 3, p. 1137–1155, 2003.
[20] M. Hossin, M. N. Sulaiman, A. Mustapha, N. Mustapha and R.

W. Rahmat, "A hybrid evaluation metric for optimizing

classifier," in 2011 3rd Conference on Data Mining and
Optimization (DMO), 2011.

[21] Y. Sasaki, "The truth of the F-measure," Teach Tutor Mater, 1

2007.

[22] D. Jurafsky and J. Martin, "Naive bayes and sentiment

classification," Speech and language processing, p. 74–91,
2017.

[23] X. Zhang, J. Zhao and Y. LeCun, "Character-level

convolutional networks for text classification," arXiv preprint
arXiv:1509.01626, 2015.

[24] S. Bai, J. Z. Kolter and V. Koltun, "An empirical evaluation of

generic convolutional and recurrent networks for sequence
modeling," arXiv preprint arXiv:1803.01271, 2018.

